Zebra - User’'s Guide and Reference

Sebastian Hammer
Adam Dickmeiss
Heikki Levanto

Mike Taylor



Zebra - User's Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss

by Heikki Levanto

by Mike Taylor

Copyright © 1995-2004 Index Data

Zebra is a free, fast, friendly information management system. It can index records in XML/SGML, MARC,
e-mail archives and many other formats, and quickly find them using a combination of boolean searching and
relevance ranking. Search-and-retrieve applications can be written using APIs in a wide variety of languages,
communicating with the Zebra server using industry-standard information-retrieval protocols.

This manual explains how to build and install Zebra, configure it appropriately for your application, add data and
set up a running information service. It describes version 1.3.18 of Zebra.




Table of Contents

I 1 o o 11 Tod 1T o ISR 1
OVEBIVIBW. ...ttt ettt ettt e e e re e st eh e e be s et se e s em e e et e Rt eb e e b e bese e e e R e eb e ReHE e b emben e e Rt eReeb e e b e see e eneenesaeseeseentan 1
(TS 10U €TSS UR PR U PSPPI 1
F Y o] o] To%= 1 o] 1SS 2

DADS - the DTV Article DatabasSe SEIVICE........cciiiiri ittt 2
NLI-Z39.50 - a Natural Language Interface for Libraries........cc.cccooveiieiccicc v 2
ULS (UNION LISt Of SEHAIS).....cciiieieeticiiste ettt sttt s ntesre e e e ens 3
ValiOUS WED INUEXES. ...ttt sttt et b e b b se e e e se e bt s bt sb et e b e e et eneebesbeseen 3
ST o] 6 Lo ¢ APPSR OPPRPRRIOE 3
FULUIE DIFECTIONS. ...ttt b bbbt bt et sttt b e e b b e e et e bt eb e e bt sbees e b e e e st eneeb et s 4

P2 1) == Lo T o OSSR 5
LN OSSR 5
LT 72RO 6

G T O 1103 ) - 5 9

v s Lg ] ][ @ o] a1 To TN T = 11T ] £ L OSSOSO 11
L0 YT 1SR 11
Example 1: XML IndeXing And SEarChINQG........cccccureirrireirisieese e 11
Example 2: Supporting Interoperable Searches..........c i 12

5. ADMINISErAtiNG ZEDIA ..ot ettt st e et et ee e e st e s e e e e eneereneas 15
LRL=Toto] o I 5] o= SO ST RO TSP 15
The Zebra ConfigUIation FilE...........o ettt sre e 15
(o Tor=1 1] gTo J = L=Tolo] (o L= NPT 17
Indexing with no Record IDS (SIMple INAEXING)......ccoierrirereee et 17
INdexing With File RECOI IDS........coiiiiiieeeee ettt st sbe e 18
Indexing With General RECOI IDIS........coiiiiiieeee ettt e e e et sbe e 19
YCTo 1S3 (] gl o o= 1 o] o ST SSTRURT 20
Safe Updating - Using ShadOw REQISIELS........ccuiiiiieie ettt st s ne s 21

(DTS ox 0] 1o o U 21
How to Use Shadow ReQISIEr FIlES.....ccoiieeieeeese ettt 21

6. Running the Maintenance Interface (ZEbraitX).......c.cvuereeieiiie e 23

7. THE Z39.50 SEIVEN.....cuiietiietiietee sttt sttt sttt ettt s et ese b be st e b e e b et b etk et e b et s b e ne st nesbeneseenenene 25
Running the Z39.50 SErvVer (ZEDIaSIM)......cccueeeeeesiesereeeeese st e et e e se e e e e nesreneas 25
Z39.50 Protocol Support and BENAVIOL...........ccvviiirierieiee e seeseees et e et seee e ssesnesnens 26

T TLE= 11 72= o o FO OO 26
Y=o o R 26

REGUIAT EXPIESSIONS. .....cictiieiiietiiete sttt b et bttt e e 27

QUETY EXAMPIES ... bbbt b et bbb 28
LR (=15 T=] Y SO PUPRPR TR 29
o> o RS 29
o ] USSP 29
L4 o ] PSSR 29

8. TE RECOII MOEL........oeieieee ettt sttt st st e s bese et se et e s be s e et e s e e e neeneerenean 30

LOCAI REPIESENTALIAN. ... .c.eeuieetireetie ettt ettt b bt s e bt e bt e bt e bt e b e e b b ene b s e e ens 30

CanoniCal INPUE FOIMI@L........coiiiii ettt b et se e e aesae e e e s e e e e enesneeeas 31
=T ot ] (ol o To ) AR 31
RV 22 L= T TSRS 32
T 01U L 11 =T =TSSP U O STRRRN 33



INterNal REPIESENTALIAN. ......coveuireetieetiietere ettt bbb bbb b s neens 35

TAGGEA EIBMENTS. ...ttt et st b et b et b et b bt e b se et ebene b 35

B2 L4 = g £ 35

[z Ur= B = (=0 0= o1 PSR RR 36
Configuring YOUr Data MOEL..........cociriiieiie bbb 36

THE ADSIFACT SYNTAX. ..t eeeteiiteierieie ettt b e bt b et b et s b b e se et e se et e seebe e ebeneas 36

The Configuration FlES...........oii ittt a e e 37

The Abstract SYyntaxX (.8hS) FIlES ..o e e 37

The ArbULE Set (LAtt) FIlES.....coi i e bbb e 40

The Tag Set ((tag) FIleS... ..o et bbb e b b e 40

The Variant Set (.War) FIlES.........o e et e 42

The Element Set (L8St) FilRS.......o e e bbb e 42

The Schema Mapping (.MapP) FIlES......oo et 44

The MARC (1SO2709) Representation (.mar) FIES........cccoveceveiieiececese e 44

Field Structure and CharaCler SEIS..........uiieeeirere et s 44

EXCRANGE FOMMIALS......coiiieeecece ettt e st e et e s ae et e teesaeneesreeeesreeneeneennnens 46

A LICEBNSE....o ettt st ettt s et e et e et eebe e bt e be s b e e a b e b e ehe e beahe e beaheeRa e beehe e beebe et e ahe et ebeebeeateebeereareeneenbenreens a7
GNU GENEral PUDIIC LICENSE......cuiuiiieiirietirieieetese ettt ettt sttt 47

B. About Index Data and the ZEeDra SEIVET ...t 53



Chapter 1. Introduction

Overview

Zebra (http://indexdata.dk/zebra/) is a high-performance, general-purpose structured text indexing and retrieval
engine. It reads records in a variety of input formats (eg. email, XML, MARC) and provides access to them
through a powerful combination of boolean search expressions and relevance-ranked free-text queries.

Zebra supports large databases (tens of millions of records, tens of gigabytes of data). It allows safe, incremental
database updates on live systems. Because Zebra supports the industry-standard information retrieval protocol,
Z39.50, you can search Zebra databases using an enormous variety of programs and toolkits, both commercial
and free, which understand this protocol. Application libraries are available to allow bespoke clients to be

written in Perl, C, C++, Java, Tcl, Visual Basic, Python, PHP and more - see the ZOOM web site
(http://zoom.z3950.0rg/) for more information on some of these client toolkits.

This document is an introduction to the Zebra system. It explains how to compile the software, how to prepare
your first database, and how to configure the server to give you the functionality that you need.

Features

This is an overview of some of Zebra's most important features:

+ Very large databases: logical files can be automatically partitioned over multiple disks.

- Arbitrarily complex records. The internal data format is a structured format conceptually similar to XML or
GRS-1, which allows lists, nested structured data elements and variant forms of data.

- Robust updating - records can be added and deleted “on the fly” without rebuilding the index from scratch.
Records can be safely updated even while users are accessing the server. The update procedure is tolerant to
crashes or hard interrupts during database updating - data can be reconstructed following a crash.

- Configurable to understand many input formats. A system of input filters driven by regular expressions allows
most ASCII-based data formats to be easily processed. SGML, XML, 1ISO2709 (MARC), and raw text are
also supported.

« Searching supports a powerful combination of boolean queries as well as relevance-ranking (free-text)
queries. Truncation, masking, full regular expression matching and "approximate matching" (eg. spelling
mistakes) are all handled.

- Index-only databases: data can be, and usually is, imported into Zebra’s own storage, but Zebra can also refer
to external files, building and maintaining indexes of "live" collections.

« Zebrais written in portable C, so it runs on most Unix-like systems as well as Windows NT. A binary
distribution for Windows NT is available at http://ftp.indexdata.dk/pub/zebra/win32/, and pre-built packages
are available for some Linux distributions: Red Hat 7.x RPMs at http://ftp.indexdata.dk/pub/zebra/RedHat7.X/
and Debian packages at http://ftp.indexdata.dk/pub/zebra/debian/

Z39.50 protocol support:



Chapter 1. Introduction

- Protocol facilities: Init, Search, Present (retrieval), Segmentation (support for very large records), Delete, Scan
(index browsing), Sort, Close and support for the “update” Extended Service to add or replace an existing
XML record.

- Piggy-backed presents are honored in the search request - that is, a subset of the found records can be returned

directly with a search response, enabling search and retrieval to happen in a single round-trip.
- Named result sets are supported.

- Easily configured to support different application profiles, with tables for attribute sets, tag sets, and abstract
syntaxes. Additional tables control facilities such as element mappings to different schema (eg.,
GILS-to-USMARC).

« Complex composition specifications using Espec-1 (partial support). Element sets are defined using the
Espec-1 capability, and are specified in configuration files as simple element requests (and, optionally, variant
requests).

- Multiple record syntaxes for data retrieval: GRS-1, SUTRS, XML, 1SO2709 (MARC), etc. Records can be
mapped between record syntaxes and schemas on the fly.

Applications

Zebra has been deployed in numerous applications, in both the academic and commercial worlds, in application
domains as diverse as bibliographic catalogues, geospatial information, structured vocabulary browsing,
government information locators, civic information systems, environmental observations, museum information
and web indexes.

Notable applications include the following:

DADS - the DTV Article Database Service

DADS is a huge database of more than ten million records, totalling over ten gigabytes of data. The records are
metadata about academic journal articles, primarily scientific; about 10% of these metadata records link to the
full text of the articles they describe, a body of about a terabyte of information (although the full text is not
indexed.)

It allows students and researchers at DTU (Danmarks Tekniske Universitet, the Technical College of Denmark)
to find and order articles from multiple databases in a single query. The database contains literature on all
engineering subjects. It's available on-line through a web gateway, though currently only to registered users.

More information can be found at http://www.dtv.dk/help/dads/index_e.htm

NLI-Z39.50 - a Natural Language Interface for Libraries

Fernuniversitat Hagen in Germany have developed a natural language interface for access to library databases.
http://ki212.fernuni-hagen.de/nli/NLlintro.html In order to evaluate this interface for recall and precision, they
chose Zebra as the basis for retrieval effectiveness. The Zebra server contains a copy of the GIRT database,
consisting of more than 76000 records in SGML format (bibliographic records from social science), which are
mapped to MARC for presentation.

(GIRT is the German Indexing and Retrieval Testdatabase. It is a standard German-language test database for
intelligent indexing and retrieval systems. See
http://www.gesis.org/forschung/informationstechnologie/clef-delos.htm)



Chapter 1. Introduction

Evaluation will take place as part of the TREC/CLEF campaign 2003 http://clef.iei.pi.cnr.it or
http://www4.eurospider.ch/CLEF/

For more information, contact Johannes Levelidghannes.Leveling@FernUni-Hagen.De >

ULS (Union List of Serials)

The M25 Systems Team has created a union catalogue for the periodicals of the twenty-one constituent libraries
of the University of London and the University of Westminster (http://www.m25lib.ac.uk/ULS/). They have
achieved this using an unusual architecture, which they describe as a “non-distributed virtual union catalogue”.

The member libraries send in data files representing their periodicals, including both brief bibliographic data and
summary holdings. Then 21 individual Z39.50 targets are created, each using Zebra, and all mounted on the

single hardware server. The live service provides a web gateway allowing Z39.50 searching of all of the targets or
a selection of them. Zebra’s small footprint allows a relatively modest system to comfortably host the 21 servers.

More information can be found at http://www.m25lib.ac.uk/ULS/

Various web indexes

Zebra has been used by a variety of institutions to construct indexes of large web sites, typically in the region of
tens of millions of pages. In this role, it functions somewhat similarly to the engine of google or altavista, but for
a selected intranet or a subset of the whole Web.

For example, Liverpool University’s web-search facility (see on the home page at http://www.liv.ac.uk/ and
many sub-pages) works by relevance-searching a Zebra database which is populated by the Harvest-NG
web-crawling software.

For more information on Liverpool university’s intranet search architecture, contact John Gilbertson
<jgilbert@liverpool.ac.uk >

Kang-Jin Lee fe@arco.de >, has recently modified the Harvest web indexer to use Zebra as its native
repository engine. His comments on the switch over from the old engine are revealing:

The first results after some testing with Zebra are very promising. The tests were done with around 220,000 SOIF files,
which occupies 1.6GB of disk space.

Building the index from scratch takes around one hour with Zebra where [old-engine] needs around five hours. While
[old-engine] blocks search requests when updating its index, Zebra can still answer search requests. [...] Zebra supports
incremental indexing which will speed up indexing even further.

While the search time of [old-engine] varies from some seconds to some minutes depending how expensive the query
is, Zebra usually takes around one to three seconds, even for expensive queries. [...] Zebra can search more than 100
times faster than [old-engine] and can process multiple search requests simultaneously

| am very happy to see such nice software available under GPL.

Support

You can get support for Zebra from at least three sources.

First, there’s the Zebra web site at http://indexdata.dk/zebra/, which always has the most recent version available
for download. If you have a problem with Zebra, the first thing to do is see whether it’s fixed in the current
release.



Chapter 1. Introduction

Second, there's the Zebra mailing list. Its home page at http://indexdata.dk/mailman/listinfo/zebralist includes a
complete archive of all messages that have ever been posted on the list. The Zebra mailing list is used both for
announcements from the authors (new releases, bug fixes, etc.) and general discussion. You are welcome to seek
support there. Join by sending email teesra-request@indexdata.dk > with the wordsubscribe  in the

body of the message.

Third, it's possible to buy a commercial support contract, with well defined service levels and response times,
from Index Data. See http://indexdata.dk/support/ for details.

Future Directions

These are some of the plans that we have for the software in the near and far future, ordered approximately as we
expect to work on them.

- Improved support for XML in search and retrieval. Eventually, the goal is for Zebra to pull double duty as a
flexible information retrieval engine and high-performance XML repository. The recent addition of XPath
searching is one example of the kind of enhancement we’re working on.

- Access to the search engine through SOAP/RPC API to allow the construction of applications without
requiring Z39.50 tools. This will shortly be available by means of Index Data’s SRW-to-239.50 gateway,
currently in beta test.

- Finalisation and documentation of Zebra’s C programming API, allowing updates, database management and
other functions not readily expressed in Z39.50. We will also consider exposing the API through SOAP.

« Support for the use of Perl both for access to the Zebra API and for building extension “plug-ins” such as
input filters. The code for this has been contributed to the source tree by Peter Popovics
<pop@technomat.hu >, and is in the process of being integrated and tested.

- Improved free-text searching. We're first and foremost octet jockeys and we're actively looking for
organisations or people who'd like to contribute experience in relevance ranking and text searching.

Programmers thrive on user feedback. If you are interested in a facility that you don’t see mentioned here, or if
there’s something you think we could do better, please drop us a mail. Better still, implement it and send us the
patches.

If you think it’s all really neat, you're welcome to drop us a line saying that, too. You can email us on
<info@indexdata.dk > or check the contact info at the end of this manual.



Chapter 2. Installation

Zebra is written in ANSI C and was implemented with portability in mind. We primarily use GCC
(http://gcc.gnu.org/) on UNIX and Microsoft Visual C++ (http://msdn.microsoft.com/vstudio/) on Windows.

The software is regularly tested on Debian GNU/Linux (http://www.debian.org/), Redhat Linux
(http://www.redhat.com/), Gentoo Linux (http://www.gentoo.org/), SUSE Linux (http://www.suse.com/),
FreeBSD (i386) (http://www.freebsd.org/), MAC OSX (http://www.apple.com/macosx/), SunOS 5.8 (sparc)
(http://wwws.sun.com/software/solaris/), Windows 2000 (http://www.microsoft.com/windows2000/).

Zebra can be configured to use the following utilities (most of which are optional):

yaz (http://www.indexdata.dk/yaz/) (required)
Zebra uses YAZ to support Z39.50/SRW. Also the memory management utilites from YAZ is used by Zebra.

iconv (http://www.gnu.org/software/libiconv/) (optional)
Character set conversion. This is required if you're going to use any other character set than UTF-8 and
ISO-8859-1 for records. Note that some Unixes has iconv built-in.

Expat (http://expat.sourceforge.net/) (optional)
XML parser. If you're going to index real XML you should install this (filter grs.xml). On most systems you
should be able to find binary Expat packages.

Perl (http://www.perl.com/) (optional)
Perl is required if you're going to use the Zebra perl filter facility or the Zebra perl API. Perl is preinstalled
on many Unixes. We've not tried the Perl extension on Windows ourselves.

Tcl (http://www.tcl.tk/) (optional)
Tcl is required if you need to use the Tcl record filter for Zebra. You can find binary packages for Tcl for
many Unices and Windows.

Autoconf (http://www.gnu.org/software/autoconf/), Automake (http://www.gnu.org/software/automake/)

(optional)
GNU Automake and Autoconf are only required if you're using the CVS version of Zebra. You do not need
these if you have fetched a Zebra tar.

Docbook (http://docbook.org/) and friends (optional)

These tools are only required if you're writing documentation for Zebra. You need the following Debian
packages: jadetex, docbook, docbook-dsssl|, docbook-xml, docbook-utils.

UNIX

On Unix,gcc works fine, but any native C compiler should be possible to use as long as it is ANSI C compliant.

Unpack the distribution archive. Thenfigure  shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to &teltél@ in each directory
of Zebra.

To run the configure script type:



Chapter 2. Installation

Jconfigure

The configure script attempts to use C compiler specified bg@environment variable. If this is not set; or
GNU C will be used. Th&€FLAGSenvironment variable holds options to be passed to the C compiler. If you're
using a Bourne-shell compatible shell you may pass something like this:

CC-=/opt/ccs/bin/cc CFLAGS=-O ./configure

The configure script support various options: you can see what they are with

Jconfigure --help

Once the build environment is configured, build the software by typing:

make

If the build is successful, two executables are created in the sub-diréadexy :

zebrasrv

The 239.50 server and search engine.

zebraidx

The administrative indexing tool.

You can now use Zebra. If you wish to install it system-wide, then as root type

make install
By default this will install the Zebra executables/isr/local/bin , and the standard configuration files in
lusr/local/share/idzebra You can override this with theprefix ~ option to configure.

WIN32

The easiest way to install Zebra on Windows is by downloading an installer from here
(http://ftp.indexdata.dk/pub/zebra/win32/). The installer comes with source too - in case you wish to compile
Zebra with different Compiler options.

Zebra is shipped with "makefiles” for the NMAKE tool that comes with Microsoft Visual C++
(http://msdn.microsoft.com/vstudio/). Version 6 has been tested. We expect that zebra compiles with version 5 as
well.



Chapter 2. Installation

Start a command prompt and switch the sub directeiy where the filenakefile is located. Customize the
installation by editing thenakefile file (for example by using notepad). The following summarizes the most
important settings in that file:

DEBUG

If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded debug
DLL). If set to O, the software is compiled with release libraries (code generation is multi-threaded DLL).

YAZDIR
Directory of YAZ source. Zebra’s makefile expects to fird.lib ,yaz.dll inyazdir /ib and
yazdir /bin respectively.

HAVE_EXPATEXPAT_DIR

If HAVE_EXPATs set to 1, Zebra is compiled with Expat support. In this configuratior; B8BRA_DIRt0
the Expat source directory. Windows version of Expat can be downloaded from SourceForge
(http://sourceforge.net/projects/expat/).

HAVE_ICONVYICONV_DIR

If HAVE_ICONMs set to 1, Zebra is compiled with iconv support. In this configurationsakVv_DIR to
the iconv source directory. Iconv binaries can be downloaded from this site
(http://www.zlatkovic.com/projects/libxml/binaries.html).

BZIP2INCLUDE, BZIP2LIB , BZIP2DEF

Define these symboils if Zebra is to be compiled with BZIP2 (http://sources.redhat.com/bzip2/) record
compression support.

Warning

The DEBUGsetting in the makefile for Zebra must be set to the same value as DEBUGsetting in the
makefile for YAZ. If not, the Zebra server/indexer will crash.

When satisfied with the settings in the makefile, type

nmake

Note: If the nmake command is not found on your system you probably haven't defined the environment
variables required to use that tool. To fix that, find and run the batch file vcvars32.bat . You need to run it
from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

If you wish to recompile Zebra - for example if you modify settings intiekefile  you can delete object files,
etc by running.

nmake clean

The following files are generated upon successful compilation:



Chapter 2. Installation

bin/zebraidx.exe

The Zebra indexer.

bin/zebrasrv.exe

The Zebra server.



Chapter 3. Quick Start

In this section, we will test the system by indexing a small set of sample GILS records that are included with the
Zebra distribution, running Zebra a server against the newly created database, and searching the indexes with a
client that connects to that server.

Go to theexamples/gils subdirectory of the distribution archive. The 48 test records are located in the sub
directoryrecords . To index these, type:

zebraidx update records

In this command, the wordpdate is followed by the name of a directorgebraidx updates all files in the
hierarchy rooted at that directory.

If your indexing command was successful, you are now ready to fire up a server. To start a server on port 2100,
type:

zebrasrv @:2100

The Zebra index that you have just created has a single database bafagd . The database contains records
structured according to the GILS profile, and the server will return records in USMARC, GRS-1, or SUTRS
format depending on what the client asks for.

To test the server, you can use any Z39.50 client. For instance, you can use the demo command-line client that
comes with YAZ:

yaz-client localhost:2100

When the client has connected, you can type:

Z> find surficial
Z> show 1

The default retrieval syntax for the client is USMARC, and the default element B€tfisll record”). To try
other formats and element sets for the same record, try:

Z>format sutrs
Z>show 1
Z>format grs-1
Z>show 1
Z>format xml
Z>show 1
Z>elements B
Z>show 1



Chapter 3. Quick Start

Note: You may notice that more fields are returned when your client requests SUTRS, GRS-1 or XML
records. This is normal - not all of the GILS data elements have mappings in the USMARC record format.

If you've made it this far, you know that your installation is working, but there’s a certain amount of voodoo
going on - for example, the mysterious incantations inzétea.cfy  file. In order to help us understand these
fully, the next chapter will work through a series of increasingly complex example configurations.

10



Chapter 4. Example Configurations

Overview

zebraidx andzebrasrv are both driven by a master configuration file, which may refer to other subsidiary
configuration files. By default, they try to ugebra.cfg  in the working directory as the master file; but this can
be changed using the option to specify an alternative master configuration file.

The master configuration file tells Zebra:

« Where to find subsidiary configuration files, including both those that are named explicitly and a few “magic”
files such aslefault.idx , Which specifies the default indexing rules.

- What record schemas to support. (Subsidiary files specifiy how to index the contents of records in those
schemas, and what format to use when presenting records in those schemas to client software.)

« What attribute sets to recognise in searches. (Subsidiary files specify how to interpret the attributes in terms of
the indexes that are created on the records.)

- Policy details such as what type of input format to expect when adding new records, what low-level indexing
algorithm to use, how to identify potential duplicate records, etc.

Now let’'s see what goes in threbra.cfg  file for some example configurations.

Example 1. XML Indexing And Searching

This example shows how Zebra can be used with absolutely minimal configuration to index a body of XML
(http://www.w3.0rg/XML/) documents, and search them using XPath (http://www.w3.0org/TR/xpath) expressions
to specify access points.

Go to theexamples/zthes  subdirectory of the distribution archive. There you will finthakefile  that will
populate theecords subdirectory with a file of Zthes (http://zthes.z3950.0rg/) records representing a
taxonomic hierarchy of dinosaurs. (The records are generated from the family tree in thefiree .) Type

make records/dino.xml to make the XML data file. (Or you could just typeake dino to build the XML

data file, create the database and populate it with the taxonomic records all in one shot - but then you wouldn’t
learn anything, would you? :-)

Now we need to create a Zebra database to hold and index the XML records. We do this with the Zebra indexer,
zebraidx , which is driven by theebra.cfy  configuration file. For our purposes, we don’t need any special
behaviour - we can use the defaults - so we can start with a minimal file that justetetiédx  where to find

the default indexing rules, and how to parse the records:

profilePath: ..../../tab
recordType: grs.sgml

That'’s all you need for a minimal Zebra configuration. Now you can roll the XML records into the database and
build the indexes:

zebraidx update records

11



Chapter 4. Example Configurations

Now start the server. Like the indexer, its behaviour is controlled bydhea.cfg  file; and like the indexer, it
works just fine with this minimal configuration.

zebrasrv

By default, the server listens on IP port number 9999, although this can easily be changtte-Seetion
calledRunning the Z239.50 Server (zebrasirvChapter 7

Now you can use the Z39.50 client program of your choice to execute XPath-based boolean queries and fetch the
XML records that satisfy them:

$ yaz-client @:9999

Connecting...Ok.

Z> find @attr 1=/Zthes/termName Sauroposeidon

Number of hits: 1

Z> format xml

Z> show 1

<Zthes>

<termld>22</termld>
<termName>Sauroposeidon</termName>
<termType>PT</termType>

<termNote>The tallest known dinosaur (18m)</termNote>
<relation>
<relationType>BT</relationType>
<termld>21</termld>
<termName>Brachiosauridae</termName>
<termType>PT</termType>

</relation>

<idzebra xmins="http://www.indexdata.dk/zebra/">
<size>300</size>
<localnumber>23</localnumber>
<filename>records/dino.xml</filename>
</idzebra>
</Zthes>

Now wasn’t that nice and easy?

Example 2: Supporting Interoperable Searches

The problem with the previous example is that you need to know the structure of the documents in order to find
them. For example, when we wanted to find the record for the t®aamoposeidorwe had to formulate a

complex XPathzthes/termName  which embodies the knowledge that taxon names are specified in a
<termName> element inside the top-levelthes> element.

This is bad not just because it requires a lot of typing, but more significantly because it ties searching semantics
to the physical structure of the searched records. You can't use the same search specification to search two
databases if their internal representations are different. Consider an different taxonomy database in which the
records have taxon names specified insidaane> element nested within <identification> element

12



Chapter 4. Example Configurations

inside a top-levektaxon> element: then you'd need to search for them using
1=/taxon/identification/name

How, then, can we build broadcasting Information Retrieval applications that look for records in many different
databases? The Z239.50 protocol offers a powerful and general solution to this: abstract “access points”. In the
Z39.50 model, an access point is simply a point at which searches can be directed. Nothing is said about
implementation: in a given database, an access point might be implemented as an index, a path into physical
records, an algorithm for interrogating relational tables or whatever works. The only important thing point is that
the semantics of an access point are fixed and well defined.

For convenience, access points are gatheredaittibute setsFor example, the BIB-1 attribute set is supposed

to contain bibliographic access points such as author, title, subject and ISBN; the GEO attribute set contains
access points pertaining to geospatial information (bounding coordinates, stratum, latitude resolution, etc.); the
CIMI attribute set contains access points to do with museum collections (provenance, inscriptions, etc.)

In practice, the BIB-1 attribute set has tended to be a dumping ground for all sorts of access points, so that, for
example, it includes some geospatial access points as well as strictly bibliographic ones. Nevertheless, this
model allows a layer of abstraction over the physical representation of records in databases.

In the BIB-1 attribute set, a taxon name is probably best interpreted as a title - that is, a phrase that identifies the
item in question. BIB-1 represents title searches by access point 4. (See The BIB-1 Attribute Set Semantics
(ftp://ftp.loc.gov/pub/z3950/defs/bibl.txt)) So we need to configure our dinosaur database so that searches for
BIB-1 access point 4 look in thetermName> element, inside the top-levekthes> element.

This is a two-step process. First, we need to tell Zebra that we want to support the BIB-1 attribute set. Then we
need to tell it which elements of its record pertain to access point 4.

We need to create aibstract Syntax filmamed after the document element of the records we’re working with,
plus a.abs suffix - in this caseZthes.abs - as follows:

attset zthes.att O
attset bibl.att O
xpath enable

systag sysno none

xelm /Zthes/termid termld:w

xelm /Zthes/termName termName:wi title:w
xelm /Zthes/termQualifier termQualifier:w

xelm /Zthes/termType termType:w

xelm /Zthes/termLanguage termLanguage:w
xelm /Zthes/termNote termNote:w

xelm /Zthes/termCreatedDate termCreatedDate:w
xelm /Zthes/termCreatedBy termCreatedBy:w
xelm /Zthes/termModifiedDate termModifiedDate:w
xelm /Zthes/termModifiedBy termModifiedBy:w

Declare Thesausus attribute set. S#es.att

Declare Bib-1 attribute set. Séil.att  in Zebra'stab directory.

This xelm directive selects contents of nodes by XPath expret&iass/termid . The contents
(CDATA) will be word searchable by Zthes attribute termld (value 1001).

O MaketermName word searchable by both Zthes attribute termName (1002) and Bib-1 atttribute title (4).

13



Chapter 4. Example Configurations

After re-indexing, we can search the database using Bib-1 attribute, title, as follows:

Z> form xml

Z> f @attr 1=4 Eoraptor
Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 1, setno 1
SearchResult-1: Eoraptor(1)
records returned: O
Elapsed: 0.106896

Z> s

Sent presentRequest (1+1).
Records: 1

[Default]Record type: XML
<Zthes>
<termld>2</termld>
<termName>Eoraptor</termName>
<termType>PT</termType>

<termNote>The most basal known dinosaur</termNote>

14



Chapter 5. Administrating Zebra

Unlike many simpler retrieval systems, Zebra supports safe, incremental updates to an existing index.

Normally, when Zebra modifies the index it reads a number of records that you specify. Depending on your
specifications and on the contents of each record one the following events take place for each record:

Insert

The record is indexed as if it never occurred before. Either the Zebra system doesn’t know how to identify
the record or Zebra can identify the record but didn’t find it to be already indexed.

Modify

The record has already been indexed. In this case either the contents of the record or the location (file) of
the record indicates that it has been indexed before.

Delete

The record is deleted from the index. As in the update-case it must be able to identify the record.

Please note that in both the modify- and delete- case the Zebra indexer must be able to generate a unique key that
identifies the record in question (more on this below).

To administrate the Zebra retrieval system, you runzthigaidx  program. This program supports a number of
options which are preceded by a dash, and a few commands (not preceded by dash).

Both the Zebra administrative tool and the Z39.50 server share a set of index files and a global configuration file.
The name of the configuration file defaultszebra.cfg . The configuration file includes specifications on how

to index various kinds of records and where the other configuration files are logsittesthrv  andzebraidx

mustbe run in the directory where the configuration file lives unless you indicate the location of the

configuration file by optionc .

Record Types

Indexing is a per-record process, in which either insert/modify/delete will occur. Before a record is indexed
search keys are extracted from whatever might be the layout the original record (sgml,html,text, etc..). The Zebra
system currently supports two fundamental types of records: structured and simple text. To specify a particular
extraction process, use either the command line optioor specify arecordType  setting in the configuration

file.

The Zebra Configuration File

The Zebra configuration file, read bgbraidx andzebrasrv defaults tazebra.cfy  unless specified by

option.

You can edit the configuration file with a normal text editor. parameter names and values are separated by colons
in the file. Lines starting with a hash sigt) (@re treated as comments.

If you manage different sets of records that share common characteristics, you can organize the configuration
settings for each type into "groups". Whesbraidx is run and you wish to address a given group you specify
the group name with they option. In this case settings that have the group name as their prefix will be used by
zebraidx . If no-g option is specified, the settings without prefix are used.

15



Chapter 5. Administrating Zebra

In the configuration file, the group name is placed before the option name itself, separated by a dot (.). For
instance, to set the record type for grquyblic to grs.sgml  (the SGML-like format for structured records)
you would write:

public.recordType: grs.sgml

To set the default value of the record typeadrt write:

recordType: text

The available configuration settings are summarized below. They will be explained further in the following
sections.

group.recordTypejhamé: type

Specifies how records with the file extensitaimeshould be handled by the indexer. This option may also

be specified as a command line optien); Note that if you do not specify mame the setting applies to all

files. In general, the record type specifier consists of the elements (each element separated by dot),

fundamental-typdile-read-typeand arguments. Currently, two fundamental types ewigt, andgrs .
group.recordld:record-id-spec

Specifies how the records are to be identified when updatedh&&ection calletlocating Records

group.databasedatabase

Specifies the Z39.50 database name.

group.storeKeysboolean

Specifies whether key information should be saved for a given group of records. If you plan to update/delete
this type of records later this should be specified as 1; otherwise it should be 0 (default), to save register
space. Sethe Section callethdexing with File Record IDs

group.storeDataboolean

Specifies whether the records should be stored internally in the Zebra system files. If you want to maintain
the raw records yourself, this option should be false (0). If you want Zebra to take care of the records for
you, it should be true(1).

registerregister-location
Specifies the location of the various register files that Zebra uses to represent your databdkes. See
Section calledRegister Location

shadowregister-location
Enables theafe updatdacility of Zebra, and tells the system where to place the required, temporary files.
Seethe Section calle®afe Updating - Using Shadow Registers

lockDir: directory

Directory in which various lock files are stored.

16



Chapter 5. Administrating Zebra

keyTmpDir:directory

Directory in which temporary files used during zebraidx’s update phase are stored.

setTmpDir:directory

Specifies the directory that the server uses for temporary result sets. If not sp@aifiedill be used.

profilePathpath

Specifies a path of profile specification files. The path is composed of one or more directories separated by
colon. Similar to PATH for UNIX systems.

attsetfilename

Specifies the filename(s) of attribute set files for use in searching. At least the Bib-1 set should be loaded
(bibl.att ). TheprofilePath setting is used to look for the specified files. $ee Section calledhe
Attribute Set (.att) Filein Chapter 8

memMax:size

Specifiessize of internal memory to use for the zebraidx program. The amount is given in megabytes -
default is 4 (4 MB). The more memory, the faster large updates happen, up to about half the free memory
available on the computer.

tempfiles:Yes/Auto/No

Tells zebra if it should use temporary files when indexing. The default is Auto, in which case zebra uses
temporary files only if it would need more thaiemMaxmegabytes of memory. This should be good for
most uses.

root: dir

Specifies a directory base for Zebra. All relative paths given (in profilePath, register, shadow) are based on
this directory. This setting is useful if your Zebra server is running in a different directory from where
zebra.cfg  is located.

Locating Records

The default behavior of the Zebra system is to reference the records from their original location, i.e. where they
were found when you rarebraidx . That is, when a client wishes to retrieve a record following a search
operation, the files are accessed from the place where you originally put them - if you remove the files (without
runningzebraidx again, the server will return diagnostic number 14 (“System error in presenting records”) to
the client.

If your input files are not permanent - for example if you retrieve your records from an outside source, or if they
were temporarily mounted on a CD-ROM drive, you may want Zebra to make an internal copy of them. To do
this, you specify 1 (true) in thetoreData ~ setting. When the Z39.50 server retrieves the records they will be
read from the internal file structures of the system.

17



Chapter 5. Administrating Zebra

Indexing with no Record IDs (Simple Indexing)

If you have a set of records that are not expected to change over time you may can build your database without
record IDs. This indexing method uses less space than the other methods and is simple to use.

To use this method, you simply omit thecordld  entry for the group of files that you index. To add a set of

records you useebraidx  with theupdate command. Thepdate command will always add all of the records

that it encounters to the index - whether they have already been indexed or not. If the set of indexed files change,
you should delete all of the index files, and build a new index from scratch.

Consider a system in which you have a group of text files calledle . That group of records should belong to
a Z39.50 database callezktbase . The followingzebra.cfg file will suffice:

profilePath: /usr/locallidzebra/tab
attset: bibl.att
simple.recordType: text
simple.database: textbase

Since the existing records in an index can not be addressed by their IDs, it is impossible to delete or modify
records when using this method.

Indexing with File Record IDs

If you have a set of files that regularly change over time: Old files are deleted, new ones are added, or existing
files are modified, you can benefit from using fie ID indexing methodology. Examples of this type of

database might include an index of WWW resources, or a USENET news spool area. Briefly speaking, the file
key methodology uses the directory paths of the individual records as a unique identifier for each record. To
perform indexing of a directory with file keys, again, you specify the top-level directory afteptizee

command. The command will recursively traverse the directories and compare each one with whatever have been
indexed before in that same directory. If a file is new (not in the previous version of the directory) it is inserted

into the registers; if a file was already indexed and it has been modified since the last update, the index is also
modified; if a file has been removed since the last visit, it is deleted from the index.

The resulting system is easy to administrate. To delete a record you simply have to delete the corresponding file
(say, with them command). And to add records you create new files (or directories with files). For your changes
to take effect in the register you must regbraidx update  with the same directory root again. This mode of
operation requires more disk space than simpler indexing methods, but it makes it easier for you to keep the
index in sync with a frequently changing set of data. If you combine this system wittatbeipdatdacility (see

below), you never have to take your server off-line for maintenance or register updating purposes.

To enable indexing with pathname IDs, you must spefilify as the value ofecordld  in the configuration
file. In addition, you should satoreKeys to 1, since the Zebra indexer must save additional information about
the contents of each record in order to modify the indexes correctly at a later time.

For example, to update records of graagald located belowdatal/records/ you should type:

$ zebraidx -g esdd update /datal/records

The corresponding configuration file includes:

18



Chapter 5. Administrating Zebra

esdd.recordld: file
esdd.recordType: grs.sgml
esdd.storeKeys: 1

Note: You cannot start out with a group of records with simple indexing (no record IDs as in the previous
section) and then later enable file record Ids. Zebra must know from the first time that you index the group
that the files should be indexed with file record IDs.

You cannot explicitly delete records when using this method (usingdlfeee command taebraidx . Instead
you have to delete the files from the file system (or move them to a different location) and thebraitix
with theupdate command.

Indexing with General Record IDs

When using this method you construct an (almost) arbitrary, internal record key based on the contents of the
record itself and other system information. If you have a group of records that explicitly associates an ID with
each record, this method is convenient. For example, the record format may contain a title or a ID-number -
unique within the group. In either case you specify the Z39.50 attribute set and use-attribute location in which
this information is stored, and the system looks at that field to determine the identity of the record.

As before, the record ID is defined by theeordld  setting in the configuration file. The value of the record ID
specification consists of one or more tokens separated by whitespace. The resulting ID is represented in the index
by concatenating the tokens and separating them by ASCII value (1).

There are three kinds of tokens:

Internal record info

The token refers to a key that is extracted from the record. The syntax of this toksetis use) , where
setis the attribute set nameseis the name or value of the attribute.

System variable
The system variables are preceded by
$

and immediately followed by the system variable name, which may one of

group
Group name.

database

Current database specified.

type
Record type.

19



Chapter 5. Administrating Zebra

Constant string

A string used as part of the ID — surrounded by single- or double quotes.

For instance, the sample GILS records that come with the Zebra distribution contain a unique ID in the data
tagged Control-Identifier. The data is mapped to the Bib-1 use attribute Identifier-standard (code 1007). To use
this field as a record id, specityibl,ldentifier-standard) as the value of theecordid  in the

configuration file. If you have other record types that uses the same field for a different purpose, you might add
the record type (or group or database name) to the record id of the gils records as well, to prevent matches with
other types of records. In this case the recordld might be set like this:

gils.recordld: $type (bibl,ldentifier-standard)

(seethe Section calle€onfiguring Your Data Modeéh Chapter &or details of how the mapping between
elements of your records and searchable attributes is established).

As for the file record ID case described in the previous section, updating your system is simply a matter of
runningzebraidx  with theupdate command. However, the update with general keys is considerably slower
than with file record IDs, since all files visited must be (re)read to discover their IDs.

As you might expect, when using the general record IDs method, you can only add or modify existing records
with theupdate command. If you wish to delete records, you must usedélete command, with a directory
as a parameter. This will remove all records that match the files below that root directory.

Register Location

Normally, the index files that form dictionaries, inverted files, record info, etc., are stored in the directory where
you runzebraidx . If you wish to store these, possibly large, files somewhere else, you must additie

entry to thezebra.cfg  file. Furthermore, the Zebra system allows its file structures to span multiple file
systems, which is useful for managing very large databases.

The value of theegister ~ setting is a sequence of tokens. Each token takes the form:

dir :size .

Thedir specifies a directory in which index files will be stored anddtzespecifies the maximum size of all
files in that directory. The Zebra indexer system fills each directory in the order specified and use the next
specified directories as needed. Hieeis an integer followed by a qualifier codefor bytes k for kilobytes.M
for megabytesGfor gigabytes.

For instance, if you have allocated two disks for your register, and the first disk is mountétd and has 2GB
of free space and the second, mountedd@n has 3.6 GB, you could put this entry in your configuration file:

register: /d1:2G /d2:3600M

Note that Zebra does not verify that the amount of space specified is actually available on the directory (file
system) specified - it is your responsibility to ensure that enough space is available, and that other applications
do not attempt to use the free space. In a large production system, it is recommended that you allocate one or
more file system exclusively to the Zebra register files.

20



Chapter 5. Administrating Zebra

Safe Updating - Using Shadow Registers

Description

The Zebra server suppormpdatingof the index structures. That is, you can add, modify, or remove records from
databases managed by Zebra without rebuilding the entire index. Since this process involves modifying
structured files with various references between blocks of data in the files, the update process is inherently
sensitive to system crashes, or to process interruptions: Anything but a successfully completed update process
will leave the register files in an unknown state, and you will essentially have no recourse but to re-index
everything, or to restore the register files from a backup medium. Further, while the update process is active,
users cannot be allowed to access the system, as the contents of the register files may change unpredictably.

You can solve these problems by enabling the shadow register system in Zebra. During the updating procedure,
zebraidx  will temporarily write changes to the involved files in a set of "shadow files", without modifying the

files that are accessed by the active server processes. If the update procedure is interrupted by a system crash or a
signal, you simply repeat the procedure - the register files have not been changed or damaged, and the partially
written shadow files are automatically deleted before the new updating procedure commences.

At the end of the updating procedure (or in a separate operation, if you so desire), the system enters a "commit
mode". First, any active server processes are forced to access those blocks that have been changed from the
shadow files rather than from the main register files; the unmodified blocks are still accessed at their normal
location (the shadow files are not a complete copy of the register files - they only contain those parts that have
actually been modified). If the commit process is interrupted at any point during the commit process, the server
processes will continue to access the shadow files until you can repeat the commit procedure and complete the
writing of data to the main register files. You can perform multiple update operations to the registers before you
commit the changes to the system files, or you can execute the commit operation at the end of each update
operation. When the commit phase has completed successfully, any running server processes are instructed to
switch their operations to the new, operational register, and the temporary shadow files are deleted.

How to Use Shadow Register Files

The first step is to allocate space on your system for the shadow files. You do this by adhiémigwa entry to
thezebra.cfg file. The syntax of thehadow entry is exactly the same as for tregjister ~ entry (sedhe
Section calledregister Location The location of the shadow area shoulddiféerentfrom the location of the
main register area (if you have specified one - remember that if you providmiser  setting, the default
register area is the working directory of the server and indexing processes).

The following excerpt from aebra.cfg  file shows one example of a setup that configures both the main
register location and the shadow file area. Note that two directories or partitions have been set aside for the
shadow file area. You can specify any number of directories for each of the file areas, but remember that there
should be no overlaps between the directories used for the main registers and the shadow files, respectively.

register: /d1:500M

shadow: /scratch1:100M /scratch2:200M

When shadow files are enabled, an extra command is availablezidfaglx command line. In order to make
changes to the system take effect for the users, you'll have to submit a "commit" command after a (sequence of)
update operation(s).

21



Chapter 5. Administrating Zebra

$ zebraidx update /dl/records
$ zebraidx commit

Or you can execute multiple updates before committing the changes:

$ zebraidx -g books update /dl/records /d2/more-records
$ zebraidx -g fun update /d3/fun-records
$ zebraidx commit

If one of the update operations above had been interrupted, the commit operation on the last line would fail:
zebraidx  will not let you commit changes that would destroy the running register. You'll have to rerun all of
the update operations since your last commit operation, before you can commit the new changes.

Similarly, if the commit operation failgebraidx  will not let you start a new update operation before you have
successfully repeated the commit operation. The server processes will keep accessing the shadow files rather than
the (possibly damaged) blocks of the main register files until the commit operation has successfully completed.

You should be aware that update operations may take slightly longer when the shadow register system is
enabled, since more file access operations are involved. Further, while the disk space required for the shadow
register data is modest for a small update operation, you may prefer to disable the system if you are adding a
very large number of records to an already very large database (we use théargmasmdmodestvery loosely

here, since every application will have a different perception of size). To update the system without the use of the
the shadow files, simply rurebraidx  with the-n option (note that you do not have to execute¢benmit

command okebraidx when you temporarily disable the use of the shadow registers in this fashion. Note also
that, just as when the shadow registers are not enabled, server processes will be barred from accessing the main
register while the update procedure takes place.

22



Chapter 6. Running the Maintenance Interface
(zebraidx)

The following is a complete reference to the command line interface tzethreidx  application.

Syntax

zebraidx [t type ][-c config ][-g group ][-d database ][-m mbytes ][-n][-s][-v level ][-I
file ][-L][-f number][-v]{command}[file ..]

Commands

updatedirectory
Update the register with the files containedlirectory . If no directory is provided, a list of files is read
fromstdin . SeeChapter 5

deletedirectory

Remove the records corresponding to the files found udidectory  from the register.

commit

Write the changes resulting from the lagtiate  commands to the register. This command is only available
if the use of shadow register files is enabled ¢heeSection calle@afe Updating - Using Shadow Registers
in Chapter .

clean

Clean shadow files and "forget" changes.

createdatabase

Create database.

dropdatabase

Drop database (delete database).

Options:

-t type
Update all files atype . Currently, the types supported aeet andgrs .subtype . If no subtype is
provided for the GRS (General Record Structure) type, the canonical input format is assuntbd (see
Section called.ocal Representatiom Chapter §. Generally, it is probably advisable to specify the record
types in thezebra.cfg  file (seethe Section calleiRecord Types Chapter %, to avoid confusion at
subsequent updates.

-c config-file

Read the configuration fileonfig-file instead ofzebra.cfg

23



Chapter 6. Running the Maintenance Interface (zebraidx)

-g group
Update the files according to the group settinggimup (seethe Section calledhe Zebra Configuration

File in Chapter 5.

-d database
The records located should be associated with the databasedagmbase for access through the Z39.50
server.

-l file

Write log messages file  instead oktderr

-m mbytes

Usembytes of memory before flushing keys to background storage. This setting affects performance
when updating large databases.

-L
Makes zebraidx skip symbolic links. By default, zebraidx follows them.

-n
Disable the use of shadow registers for this operationttse&ection calle®afe Updating - Using Shadow
Registersn Chapter .

-S
Show analysis of the indexing process. The maintenance program works in a read-only mode and doesn’t
change the state of the index. This options is very useful when you wish to test a new profile.

-V
Show Zebra version.

-v level

Set the log level tdevel .level should be one afione, debug, andall .

24



Chapter 7. The Z39.50 Server

Running the Z39.50 Server (zebrasrv)

Syntax

zebrasrv [options] [listener-address ...]

Options

-aAPDU file

Specify a file for dumping PDUs (for diagnostic purposes). The special name "-" sends oujeatrto .

-c config-file

Read configuration information frogonfig-file . The default configuration i#zebra.cfg

Don'’t fork on connection requests. This can be useful for symbolic-level debugging. The server can only
accept a single connection in this mode.

-Z
Use the 239.50 protocol. Currently the only protocol supported. The option is retained for historical
reasons, and for future extensions.

-l logfile
Specify an output file for the diagnostic messages. The default is to write this informatimierto .

-v log-level
The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,all,none}.

-u username

Set user ID. Sets the real UID of the server process to that of the gsgmame . It's useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged port.

-w working-directory

Change working directory.

Run under the Internet superseniretd . Make sure you use the logfile optiein in conjunction with this
mode and specify thé option before any other options.

-t timeout

Set the idle session timeout (default 60 minutes).

25



Chapter 7. The 239.50 Server

-k kilobytes

Set the (approximate) maximum size of present response messages. Default is 1024 KB (1 MB).

A listener-address consists of an optional transport mode followed by a colon (:) followed by a listener
address. The transport mode is eitksir ortcp (default).

For TCP, an address has the form

hostname | IP-number [ portnumber]

The port number defaults to 210 (standard Z239.50 port) for privileged users (root), and 9999 for normal users.
Examples
tcp:@

ssl:@:3000

In both cases, the special hosthame "@" is mapped to the address INADDR_ANY, which causes the server to
listen on any local interface. To start the server listening on the registered port for Z39.50, and to drop root
privileges once the ports are bound, execute the server like this (from a root shell):

zebrasrv -u daemon @

You can replacéaemon with another user, eg. your own account, or a dedicated IR server account.

The default behavior farebrasrv  is to establish a single TCP/IP listener, for the Z39.50 protocol, on port 9999.

Z39.50 Protocol Support and Behavior

Initialization

During initialization, the server will negotiate to version 3 of the Z39.50 protocol, and the option bits for Search,
Present, Scan, NamedResultSets, and concurrentOperations will be set, if requested by the client. The maximum
PDU size is negotiated down to a maximum of 1 MB by default.

Search

The supported query type are 1 and 101. All operators are currently supported with the restriction that only
proximity units of type "word" are supported for the proximity operator. Queries can be arbitrarily complex.

Named result sets are supported, and result sets can be used as operands without limitations. Searches may span
multiple databases.

26



Chapter 7. The 239.50 Server

The server has full support for piggy-backed retrieval (see also the following section).

Useattributes are interpreted according to the attribute sets which have been loadezerdteg  file, and
are matched against specific fields as specified irathe file which describes the profile of the records which
have been loaded. If no Use attribute is provided, a default of Bib-1 Any is assumed.

If a Structureattribute ofPhraseis used in conjunction with @ompletenesattribute ofComplete (Sub)fie|dhe
term is matched against the contents of the phrase (long word) register, if one exists for tHdsgpatmibute.
A phrase register is created for those fields in.tig file that contains a-specifier.

If Structure=Phraseis used in conjunction witlncomplete Field the default value fo€Completenesshe search

is directed against the normal word registers, but if the term contains multiple words, the term will only match if
all of the words are found immediately adjacent, and in the given order. The word search is performed on those
fields that are indexed as typen the.abs file.

If the Structureattribute isWord List Free-form Textor Document Texthe term is treated as a
natural-language, relevance-ranked query. This search type uses the word register, i.e. those fields that are
indexed as typ& in the.abs file.

If the Structureattribute isNumeric Stringhe term is treated as an integer. The search is performed on those
fields that are indexed as typén the.abs file.

If the Structureattribute isURxthe term is treated as a URX (URL) entity. The search is performed on those
fields that are indexed as typén the.abs file.

If the Structureattribute isLocal Numbeithe term is treated as native Zebra Record ldentifier.

If the Relationattribute isEquals(default), the term is matched in a normal fashion (modulo truncation and
processing of individual words, if required).Relationis Less ThanLess Than or EqualGreater thanor

Greater than or Equalthe term is assumed to be numerical, and a standard regular expression is constructed to
match the given expression.Rielationis Relevancgthe standard natural-language query processor is invoked.

For theTruncationattribute,No Truncationis the defaultLeft Truncationis not supportedProcess # in search
termis supported, as iRegxp-1Regxp-2Znables the fault-tolerant (fuzzy) search. As a default, a single error
(deletion, insertion, replacement) is accepted when terms are matched against the register contents.

Regular expressions

Each term in a query is interpreted as a regular expression if the truncation value iReiger1(102) or
Regxp-2103). Both query types follow the same syntax with the operands:

Matches the character

Matches any character.

[.]
Matches the set of characters specified; suda@a$ or [a-c]

and the operators:

X*

Matchesx zero or more times. Priority: high.

27



Chapter 7. The 239.50 Server
X+
Matchesx one or more times. Priority: high.
X?
Matchesx zero or once. Priority: high.

Xy
Matchesx, theny. Priority: medium.

Xly
Matches eithex ory. Priority: low.
The order of evaluation may be changed by using parentheses.

If the first character of thRegxp-Xjuery is a plus character)it marks the beginning of a section with
non-standard specifiers. The next plus character marks the end of the section. Currently Zebra only supports one
specifier, the error tolerance, which consists one digit.

Since the plus operator is normally a suffix operator the addition to the query syntax doesn't violate the syntax
for standard regular expressions.

Query examples

Phrase search fanformation retrievalin the title-register:

@attr 1=4 "information retrieval"

Ranked search for the same thing:

@attr 1=4 @attr 2=102 "Information retrieval"

Phrase search with a regular expression:

@attr 1=4 @attr 5=102 "informat.* retrieval"

Ranked search with a regular expression:

@attr 1=4 @attr 5=102 @attr 2=102 "informat.* retrieval"

In the GILS schemag(is.abs ), the west-bounding-coordinate is indexed as typand is therefore searched
by specifyingstructure=Numeric String To match all those records with west-bounding-coordinate greater than
-114 we use the following query:

@attr 4=109 @attr 2=5 @attr gils 1=2038 -114

28



Chapter 7. The 239.50 Server

Present

The present facility is supported in a standard fashion. The requested record syntax is matched against the ones
supported by the profile of each record retrieved. If no record syntax is given, SUTRS is the default. The
requested element set name, again, is matched against any provided by the relevant record profiles.

Scan

The attribute combinations provided with the termListAndStartPoint are processed in the same way as operands
in a query (see above). Currently, only the term and the globalOccurrences are returned with the terminfo
structure.

Sort

Z39.50 specifies three different types of sort criteria. Of these Zebra supports the attribute specification type in
which case the use attribute specifies the "Sort register”. Sort registers are created for those fields that are of type
"sort" in the default.idx file. The corresponding character mapping file in default.idx specifies the ordinal of each
character used in the actual sort.

Z39.50 allows the client to specify sorting on one or more input result sets and one output result set. Zebra
supports sorting on one result set only which may or may not be the same as the output result set.

Close

If a Close PDU is received, the server will respond with a Close PDU with reason=FINISHED, no matter which
protocol version was negotiated during initialization. If the protocol version is 3 or more, the server will generate
a Close PDU under certain circumstances, including a session timeout (60 minutes by default), and certain kinds
of protocol errors. Once a Close PDU has been sent, the protocol association is considered broken, and the
transport connection will be closed immediately upon receipt of further data, or following a short timeout.

29



Chapter 8. The Record Model

The Zebra system is designed to support a wide range of data management applications. The system can be
configured to handle virtually any kind of structured data. Each record in the system is associatecteotd a
schemawhich lends context to the data elements of the record. Any number of record schemas can coexist in the
system. Although it may be wise to use only a single schema within one database, the system poses no such
restrictions.

The record model described in this chapter applies to the fundamental, structured recard tyipgroduced in
the Section calle@Record Types Chapter 5

Records pass through three different states during processing in the system.

« When records are accessed by the system, they are represented in their local, or native format. This might be
SGML or HTML files, News or Mail archives, MARC records. If the system doesn’t already know how to
read the type of data you need to store, you can set up an input filter by preparing conversion rules based on
regular expressions and possibly augmented by a flexible scripting language (Tcl). The input filter produces as
output an internal representation, a tree structure.

« When records are processed by the system, they are represented in a tree-structure, constructed by tagged data
elements hanging off a root node. The tagged elements may contain data or yet more tagged elements in a
recursive structure. The system performs various actions on this tree structure (indexing, element selection,
schema mapping, etc.),

- Before transmitting records to the client, they are first converted from the internal structure to a form suitable
for exchange over the network - according to the 239.50 standard.

Local Representation

As mentioned earlier, Zebra places few restrictions on the type of data that you can index and manage.

Generally, whatever the form of the data, it is parsed by an input filter specific to that format, and turned into an
internal structure that Zebra knows how to handle. This process takes place whenever the record is accessed - for
indexing and retrieval.

The RecordType parameter in thebra.cfg ~ file, or the-t option to the indexer tells Zebra how to process

input records. Two basic types of processing are available - raw text and structured data. Raw text is just that, and
it is selected by providing the argumesktto Zebra. Structured records are all handled internally using the basic
mechanisms described in the subsequent sections. Zebra can read structured records in many different formats.

How this is done is governed by additional parameters after the "grs" keyword, separated by "." characters.

Four basic subtypes to thys type are currently available:

grs.sgmi

This is the canonical input format — described below. It is a simple SGML-like syntax.

grs.regxilter

This enables a user-supplied input filter. The mechanisms of these filters are described below.

grs.tclfilter

Similar to grs.regx but using Tcl for rules.

30



Chapter 8. The Record Model

grs.marcabstract syntax

This allows Zebra to read records in the 1ISO2709 (MARC) encoding standard. In this case, the last
parametenbstract syntaxiames theabs file (see below) which describes the specific MARC structure of
the input record as well as the indexing rules.

grs.xml

This filter reads XML records. Only one record per file is supported. The filter is only available if
ZebralYAZ is compiled with EXPAT support.

Canonical Input Format

Although input data can take any form, it is sometimes useful to describe the record processing capabilities of
the system in terms of a single, canonical input format that gives access to the full spectrum of structure and
flexibility in the system. In Zebra, this canonical format is an "SGML-like" syntax.

To use the canonical format speciss.sgml  as the record type.

Consider a record describing an information resource (such a record is sometimes kndeteads aecorg. It
might contain a field describing the distributor of the information resource, which might in turn be partitioned
into various fields providing details about the distributor, like this:

<Distributor>
<Name> USGS/WRD </Name>
<Organization> USGS/WRD </Organization>
<Street-Address>
U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
</Street-Address>
<City> ALBUQUERQUE </City>
<State> NM </State>
<Zip-Code> 87102 </Zip-Code>
<Country> USA </Country>
<Telephone> (505) 766-5560 </Telephone>
</Distributor>

The keywords surrounded by <...> dagls while the sections of text in between are tleta elementsA data
element is characterized by its location in the tree that is made up by the nested elements. Each element is
terminated by a closing tag - beginning with and containing the same symbolic tag-name as the
corresponding opening tag. The general closing tag -- terminates the element started by the last opening
tag. The structuring of elements is significant. The elerielgphonefor instance, may be indexed and
presented to the client differently, depending on whether it appears insi@astinidutor element, or some other,
structured data element suclSapplierelement.

Record Root

The first tag in a record describes the root node of the tree that makes up the total record. In the canonical input
format, the root tag should contain the name of the schema that lends context to the elements of the record (see
the Section callethternal RepresentatignThe following is a GILS record that contains only a single element
(strictly speaking, that makes it an illegal GILS record, since the GILS profile includes several mandatory

31



Chapter 8. The Record Model

elements - Zebra does not validate the contents of a record against the 239.50 profile, however - it merely
attempts to match up elements of a local representation with the given schema):

<gils>
<titte>Zen and the Art of Motorcycle Maintenance</title>
</gils>

Variants

Zebra allows you to provide individual data elements in a numbganant forms Examples of variant forms

are textual data elements which might appear in different languages, and images which may appear in different
formats or layouts. The variant system in Zebra is essentially a representation of the variant mechanism of
Z39.50-1995.

The following is an example of a title element which occurs in two different languages.

<title>

<var lang lang “"eng">

Zen and the Art of Motorcycle Maintenance</>
<var lang lang "dan">

Zen og Kunsten at Vedligeholde en Motorcykel</>
<ftitle>

The syntax of thevariant elements <var class type value> . The available values for th#assandtype
fields are given by the variant set that is associated with the current schentiag(S=etion called’he Variant
Set (.var) Filed.

Variant elements are terminated by the general end-tag </>, by the variant end-tag </var>, by the appearance of
another variant tag with the saralassandvaluesettings, or by the appearance of another, normal tag. In other
words, the end-tags for the variants used in the example above could have been omitted.

Variant elements can be nested. The element

<title>

<var lang lang "eng"><var body iana "text/plain">
Zen and the Art of Motorcycle Maintenance
<[title>

Associates two variant components to the variant list for the title element.

Given the nesting rules described above, we could write

<title>

<var body iana "text/plain>

<var lang lang "eng">

Zen and the Art of Motorcycle Maintenance
<var lang lang "dan">

Zen og Kunsten at Vedligeholde en Motorcykel

32



Chapter 8. The Record Model

</title>

The title element above comes in two variants. Both have the IANA body type "text/plain”, but one is in English,
and the other in Danish. The client, using the element selection mechanism of Z39.50, can retrieve information
about the available variant forms of data elements, or it can select specific variants based on the requirements of
the end-user.

Input Filters

In order to handle general input formats, Zebra allows the operator to define filters which read individual records
in their native format and produce an internal representation that the system can work with.

Input filters are ASCII files, generally with the sufffk . The system looks for the files in the directories given
in the profilePathsetting in thezebra.cfg  files. The record type for the filter tgs.regx. filter-filename
(fundamental typers , file read typeegx , argumenfilter-filenamé.

Generally, an input filter consists of a sequence of rules, where each rule consists of a sequence of expressions,
followed by an action. The expressions are evaluated against the contents of the input record, and the actions
normally contribute to the generation of an internal representation of the record.

An expression can be either of the following:

INIT

The action associated with this expression is evaluated exactly once in the lifetime of the application, before
any records are read. It can be used in conjunction with an action that initializes tables or other resources
that are used in the processing of input records.

BEGIN

Matches the beginning of the record. It can be used to initialize variables, etc. TypicaBE @ rule is
also used to establish the root node of the record.

END

Matches the end of the record - when all of the contents of the record has been processed.

/pattern/

Matches a string of characters from the input record.

BODY

This keyword may only be used between two patterns. It matches everything between (not including) those
patterns.

FINISH

The expression associated with this pattern is evaluated once, before the application terminates. It can be
used to release system resources - typically ones allocated liNIthetep.

33



Chapter 8. The Record Model

An action is surrounded by curly braces ({...}), and consists of a sequence of statements. Statements may be
separated by newlines or semicolons (;). Within actions, the strings that matched the expressions immediately
preceding the action can be referred to as $0, $1, $2, etc.

The available statements are:

begintype [parameter ... ]

Begin a new data element. Thgoe is one of the following:

record

Begin a new record. The following parameter should be the name of the schema that describes the
structure of the record, egils orwais (see below). Theegin record call should precede any
other use of thbegin statement.

element

Begin a new tagged element. The parameter is the name of the tag. If the tag is not matched anywhere
in the tagsets referenced by the current schema, it is treated as a local string tag.

variant

Begin a new node in a variant tree. The parameterslass type value

dataparameter

Create a data element. The concatenated arguments make up the value of the data element. The option
-text  signals that the layout (whitespace) of the data should be retained for transmission. The option
-element tag wraps the data up in thag . The use of theelement option is equivalent to preceding

the command with &egin element command, and following it with thend command.

end[type]

Close a tagged element. If no parameter is given, the last element on the stack is terminated. The first
parameter, if any, is a type name, similar to begjin statement. For thelement type, a tag name can
be provided to terminate a specific tag.

unreadno

Move the input pointer to the offset of first character that match rule giverobyhe first rule from
left-to-right is numbered zero, the second rule is named 1 and so on.

The following input filter reads a Usenet news file, producing a record in the WAIS schema. Note that the body
of a news posting is separated from the list of headers by a blank line (or rather a sequence of two newline
characters.

BEGIN { begin record wais }

["From:/ BODY /$/ { data -element name $1 }
/"Subject:/ BODY /$/ { data -element title $1 }
["Date:/ BODY /$/ { data -element lastModified $1 }
An\n/ BODY END {

begin element bodyOfDisplay

begin variant body iana "text/plain”

data -text $1

end record

34



Chapter 8. The Record Model

If Zebra is compiled with support for Tcl enabled, the statements described above are supplemented with a
complete scripting environment, including control structures (conditional expressions and loop constructs), and
powerful string manipulation mechanisms for modifying the elements of a record.

Internal Representation

When records are manipulated by the system, they're represented in a tree-structure, with data elements at the
leaf nodes, and tags or variant components at the non-leaf nodes. The root-node identifies the schema that lends
context to the tagging and structuring of the record. Imagine a simple record, consisting of a 'title’ element and

an 'author’ element:

ROOT
TITLE "Zen and the Art of Motorcycle Maintenance"
AUTHOR "Robert Pirsig"

A slightly more complex record would have the author element consist of two elements, a surname and a first
name:

ROOT
TITLE "Zen and the Art of Motorcycle Maintenance”
AUTHOR
FIRST-NAME "Robert"
SURNAME "Pirsig"

The root of the record will refer to the record schema that describes the structuring of this particular record. The
schema defines the element tags (TITLE, FIRST-NAME, etc.) that may occur in the record, as well as the
structuring (SURNAME should appear below AUTHOR, etc.). In addition, the schema establishes element set
names that are used by the client to request a subset of the elements of a given record. The schema may also
establish rules for converting the record to a different schema, by stating, for each element, a mapping to a
different tag path.

Tagged Elements

A data element is characterized by its tag, and its position in the structure of the record. For instance, while the
tag "telephone number" may be used different places in a record, we may need to distinguish between these
occurrences, both for searching and presentation purposes. For instance, while the phone numbers for the
"customer” and the "service provider" are both representatives for the same type of resource (a telephone
number), it is essential that they be kept separate. The record schema provides the structure of the record, and
names each data element (defined by the sequence of tags - the tag path - by which the element can be reached
from the root of the record).

35



Chapter 8. The Record Model

Variants

The children of a tag node may be either more tag nodes, a data node (possibly accompanied by tag nodes), or a
tree of variant nodes. The children of variant nodes are either more variant nodes or a data node (possibly
accompanied by more variant nodes). Each leaf node, which is normally a data node, correspeadsit a

form of the tagged element identified by the tag which parents the variant tree. The following title element occurs
in two different languages:

VARIANT LANG=ENG "War and Peace"
TITLE
VARIANT LANG=DAN "Krig og Fred"

Which of the two elements are transmitted to the client by the server depends on the specifications provided by
the client, if any.

In practice, each variant node is associated with a triple of class, type, value, corresponding to the variant
mechanism of Z39.50.

Data Elements

Data nodes have no children (they are always leaf nodes in the record tree).

Configuring Your Data Model

The following sections describe the configuration files that govern the internal management of data records. The
system searches for the files in the directories specified bgrtidePathsetting in thezebra.cfg  file.

The Abstract Syntax

The abstract syntax definition (also known as an Abstract Record Structure, or ARS) is the focal point of the
record schema description. For a given schema, the ABS file may state any or all of the following:

- The object identifier of the Z39.50 schema associated with the ARS, so that it can be referred to by the client.

- The attribute set (which can possibly be a compound of multiple sets) which applies in the profile. This is used
when indexing and searching the records belonging to the given profile.

- The tag set (again, this can consist of several different sets). This is used when reading the records from a file,
to recognize the different tags, and when transmitting the record to the client - mapping the tags to their
numerical representation, if they are known.

- The variant set which is used in the profile. This provides a vocabulary for specifyifigrtheof data that
appear inside the records.

- Element set names, which are a shorthand way for the client to ask for a subset of the data elements contained
in a record. Element set names, in the retrieval module, are mappéshtent specifications/hich contain
information equivalent to thEspec-Isyntax of Z39.50.

- Map tables, which may specify mappingsaiher database profiles, if desired.

36



Chapter 8. The Record Model

- Possibly, a set of rules describing the mapping of elements to a MARC representation.

« Alist of element descriptions (this is the actual ARS of the schema, in Z39.50 terms), which lists the ways in
which the various tags can be used and organized hierarchically.

Several of the entries above simply refer to other files, which describe the given objects.

The Configuration Files

This section describes the syntax and use of the various tables which are used by the retrieval module.

The number of different file types may appear daunting at first, but each type corresponds fairly clearly to a
single aspect of the Z39.50 retrieval facilities. Further, the average database administrator, who is simply reusing
an existing profile for which tables already exist, shouldn’t have to worry too much about the contents of these
tables.

Generally, the files are simple ASCII files, which can be maintained using any text editor. Blank lines, and lines
beginning with a (#) are ignored. Any characters on a line followed by a (#) are also ignored. All other lines
containdirectives which provide some setting or value to the system. Generally, settings are characterized by a
single keyword, identifying the setting, followed by a number of parameters. Some settings are repeatable (r),
while others may occur only once in a file. Some settings are optional (0), while others again are mandatory (m).

The Abstract Syntax (.abs) Files

The name of this file type is slightly misleading in Z39.50 terms, since, apart from the actual abstract syntax of
the profile, it also includes most of the other definitions that go into a database profile.

When a record in the canonical, SGML-like format is read from a file or from the database, the first tag of the file
should reference the profile that governs the layout of the record. If the first tag of the record<gijlsay,, the
system will look for the profile definition in the filgils.abs . Profile definitions are cached, so they only have

to be read once during the lifespan of the current process.

When writing your own input filters, theecord-begincommand introduces the profile, and should always be
called first thing when introducing a new record.

The file may contain the following directives:

namesymbolic-name

(m) This provides a shorthand name or description for the profile. Mostly useful for diagnostic purposes.

referenceDID-name

(m) The reference name of the OID for the profile. The reference names can be foundtih tihedule of
YAZ.

attseffilename

(m) The attribute set that is used for indexing and searching records belonging to this profile.

tagsefiilename

(o) The tag set (if any) that describe that fields of the records.

37



Chapter 8. The Record Model

varseffilename

(o) The variant set used in the profile.

maptabfilename

(o,r) This points to a conversion table that might be used if the client asks for the record in a different
schema from the native one.

marcfilename

(o) Points to a file containing parameters for representing the record contents in the 1ISO2709 syntax. Read
the description of the MARC representation facility below.

esethnam@ame filename

(o,r) Associates the given element set name with an element selection file. If an (@) is given in place of the
filename, this corresponds to a null mapping for the given element set name.

anytags

(o) This directive specifies a list of attributes which should be appended to the attribute list given for each
element. The effect is to make every single element in the abstract syntax searchable by way of the given
attributes. This directive provides an efficient way of supporting free-text searching across all elements.
However, it does increase the size of the index significantly. The attributes can be qualified with a structure,
as in theelm directive below.

elmpath name attributes

(o,r) Adds an element to the abstract record syntax of the schemaattmefollows the syntax which is

suggested by the Z39.50 document - that is, a sequence of tags separated by slashes (/). Each tag is given as
a comma-separated pair of tag type and -value surrounded by parenthesisnidis the name of the

element, and thattributes specifies which attributes to use when indexing the element in a
comma-separated list. A!in place of the attribute name is equivalent to specifying an attribute name

identical to the element name. A - in place of the attribute name specifies that no indexing is to take place

for the given element. The attributes can be qualified ¥igldl types to specify which character set

should govern the indexing procedure for that field. The same data element may be indexed into several
different fields, using different character set definitions. Se¢hth&ection calleffield Structure and

Character SetsThe default field type is for word.

xelmxpath attributes

Specifies indexing for record nodes giventpath . Unlike directive elm, this directive allows you to

index attribute contents. Thepath uses a syntax similar to XPath. Thtributes have same syntax

and meaning as directive elm, except that operator ! refers to the nodes selexpadhy
encodingencodingname

This directive specifies character encoding for external records. For records such as XML that specifies
encoding within the file via a header this directive is ignored. If neither this directive is given, nor an
encoding is set within external records, ISO-8859-1 encoding is assumed.

xpathenable /disable

If this directive is followed byenable , then extra indexing is performed to allow for XPath-like queries. If
this directive is not specified - equivalentdisable - no extra XPath-indexing is performed.

38



Chapter 8. The Record Model

systagsystemTag actualTag

Specifies what information, if any, Zebra should automatically include in retrieval records for the “system
fields” that it supportssystemTag may be any of the following:

rank

An integer indicating the relevance-ranking score assigned to the record.

Sysno
An automatically generated identifier for the record, unique within this database. It is represented by
the<localControINumber> elementin XML and th€1,14) tagin GRS-1.

size
The size, in bytes, of the retrieved record.

TheactualTag parameter may beone to indicate that the named element should be omitted from
retrieval records.

Note: The mechanism for controlling indexing is not adequate for complex databases, and will probably be
moved into a separate configuration table eventually.

The following is an excerpt from the abstract syntax file for the GILS profile.

name gils

reference GILS-schema
attset gils.att

tagset gils.tag

varset varl.var

maptab gils-usmarc.map

# Element set names

esetname VARIANT gils-variant.est # for WAIS-compliance
esetname B gils-b.est

esetname G gils-g.est
esetname F @

elm (1,10) rank -
elm (1,12) url -
eim (1,14) localControlNumber Local-number
elm (1,16) dateOfLastModification Date/time-last-modified
elm (2,1) title w:lp:!
eim (4,1) controlldentifier Identifier-standard
elm (2,6) abstract Abstract
elm (4,51) purpose !
elm (4,52) originator -

elm (4,53) accessConstraints !

elm (4,54) useConstraints !

elm (4,70) availability -

39



Chapter 8. The Record Model

elm (4,70)/(4,90) distributor ;
elm (4,70)/(4,90)/(2,7) distributorName !
elm (4,70)/(4,90)/(2,10 distributorOrganization !

elm (4,70)/(4,90)/(4,2) distributorStreetAddress !

elm (4,70)/(4,90)/(4,3) distributorCity 1

The Attribute Set (.att) Files

This file type describes thdse elements of an attribute set. It contains the following directives.

namesymbolic-name

(m) This provides a shorthand name or description for the attribute set. Mostly useful for diagnostic
purposes.

referenceDID-name

(m) The reference name of the OID for the attribute set. The reference names can be foundiin the
module ofYAZ

includefilename

(o,r) This directive is used to include another attribute set as a part of the current one. This is used when a
new attribute set is defined as an extension to another set. For instance, many new attribute sets are defined
as extensions to thHaib-1 set. This is an important feature of the retrieval system of Z39.50, as it ensures
the highest possible level of interoperability, as those access points of your database which are derived from
the external set (say, bib-1) can be used even by clients who are unaware of the new set.

attatt-value att-name [local-value]

(o,r) This repeatable directive introduces a new attribute to the set. The attribute value is stored in the index
(unless docal-value is given, in which case this is stored). The name is used to refer to the attribute
from theabstract syntax

This is an excerpt from the GILS attribute set definition. Notice how the file describirgjlikieattribute set is
referenced.

name gils
reference GILS-attset
include bibl.att

att 2001 distributorName

att 2002 indextermsControlled
att 2003 purpose

att 2004 accessConstraints
att 2005 useConstraints

40



Chapter 8. The Record Model

The Tag Set (.tag) Files

This file type defines the tagset of the profile, possibly by referencing other tag sets (most tag sets, for instance,
will include tagsetG and tagsetM from the Z239.50 specification. The file may contain the following directives.

namesymbolic-name

(m) This provides a shorthand name or description for the tag set. Mostly useful for diagnostic purposes.

referencedlD-name
(o) The reference name of the OID for the tag set. The reference names can be founatiimtioelule of
YAZ The directive is optional, since not all tag sets are registered outside of their schema.
typeinteger
(m) The type number of the tagset within the schema profile (note: this specification really should belong to
the .abs file. This will be fixed in a future release).
includefilename

(o,r) This directive is used to include the definitions of other tag sets into the current one.

tagnumber names type

(o,r) Introduces a new tag to the set. Themberis the tag number as used in the protocol (there is currently
no mechanism for specifying string tags at this point, but this would be quick work to addhanes
parameter is a list of names by which the tag should be recognized in the input file format. The names
should be separated by slashes (/). iWpeis the recommended data type of the tag. It should be one of the
following:

. structured

. string

« numeric

+ bool

- oid

« generalizedtime
« intunit

. int

- octetstring

- null

The following is an excerpt from the TagsetG definition file.

name tagsetg
reference TagsetG
type 2

tag 1 title string

tag 2 author string

tag 3 publicationPlace string
tag 4 publicationDate string

41



Chapter 8. The Record Model

tag 5 documentld string
tag 6 abstract string

tag 7 name string

tag 8 date generalizedtime
tag 9 bodyOfDisplay string
tag 10 organization string

The Variant Set (.var) Files

The variant set file is a straightforward representation of the variant set definitions associated with the protocol.
At present, only th&/ariant-1set is known.

These are the directives allowed in the file.

namesymbolic-name

(m) This provides a shorthand name or description for the variant set. Mostly useful for diagnostic purposes.

referenceDlD-name

(o) The reference name of the OID for the variant set, if one is required. The reference names can be found
in theutil module ofYAZ

classinteger class-name

(m,r) Introduces a new class to the variant set.

typeinteger type-name datatype

(m,r) Addes a new type to the current class (the one introduced by the mostclks=directive). The type
names belong to the same name space as the one used in the tag set definition file.

The following is an excerpt from the file describing the varianfgetant-1

name variant-1
reference Variant-1

class 1 variantld

type 1 variantld octetstring
class 2 body

type 1 iana string

type 2 z39.50 string
type 3 other string

42



Chapter 8. The Record Model

The Element Set (.est) Files

The element set specification files describe a selection of a subset of the elements of a database record. The
element selection mechanism is equivalent to the one supplied IBspex-Isyntax of the Z39.50 specification.

In fact, the internal representation of an element set specification is identicalEsjlee- Istructure, and we’ll

refer you to the description of that structure for most of the detailed semantics of the directives below.

Note: Not all of the Espec-1 functionality has been implemented yet. The fields that are mentioned below all
work as expected, unless otherwise is noted.

The directives available in the element set file are as follows:

defaultVariantSetld®ID-name

(o) If variants are used in the following, this should provide the name of the variantset used (it's not
currently possible to specify a different set in the individual variant request). In almost all cases (certainly
all profiles known to us), the namériant-1  should be given here.

defaultVariantRequesiariant-request

(o) This directive provides a default variant request for use when the individual element requests (see
below) do not contain a variant request. Variant requests consist of a blank-separated list of variant
components. A variant compont is a comma-separated, parenthesized triple of variant class, type, and value
(the two former values being represented as integers). The value can currently only be entered as a string
(this will change to depend on the definition of the variant in question). The special value (@) is interpreted
as a null value, however.

simpleElemenpath ['variant’ variant-request]

(o,r) This corresponds to a simple element requeEsipec-1 The path consists of a sequence of
tag-selectors, where each of these can consist of either:

« A simple tag, consisting of a comma-separated type-value pair in parenthesis, possibly followed by a
colon (:) followed by an occurrences-specification (see below). The tag-value can be a number or a
string. If the first character is an apostrophe ('), this forces the value to be interpreted as a string, even if it
appears to be numerical.

- A WildThing, represented as a question mark (?), possibly followed by a colon (:) followed by an
occurrences specification (see below).

- A WildPath, represented as an asterisk (*). Note that the last element of the path should not be a wildPath
(wildpaths don’t work in this version).

The occurrences-specification can be either the stling the stringast , or an explicit value-range. The
value-range is represented as an integer (the starting point), possibly followed by a plus (+) and a second
integer (the number of elements, default being one).

The variant-request has the same syntax as the defaultVariantRequest above. Note that it may sometimes be
useful to give an empty variant request, simply to disable the default for a specific set of fields (we aren'’t
certain if this is propeEspec-1but it works in this implementation).

The following is an example of an element specification belonging to the GILS profile.

43



Chapter 8. The Record Model

simpleelement (1,10)
simpleelement (1,12)
simpleelement (2,1)
simpleelement (1,14)
simpleelement (4,1)
simpleelement (4,52)

The Schema Mapping (.map) Files

Sometimes, the client might want to receive a database record in a schema that differs from the native schema of
the record. For instance, a client might only know how to process WAIS records, while the database record is
represented in a more specific schema, such as GILS. In this module, a mapping of data to one of the MARC
formats is also thought of as a schema mapping (mapping the elements of the record into fields consistent with
the given MARC specification, prior to actually converting the data to the ISO2709). This use of the object
identifier for USMARC as a schema identifier represents an overloading of the OID which might not be entirely
proper. However, it represents the dual role of schema and record syntax which is assumed by the MARC family
in Z39.50.

These are the directives of the schema mapping file format:

targetNameaname

(m) A symbolic name for the target schema of the table. Useful mostly for diagnostic purposes.

targetRefOID-name
(m) An OID name for the target schema. This is used, for instance, by a server receiving a request to present
arecord in a different schema from the native one. The name, again, is foundbicl thedule ofYAZ
mapelement-name target-path

(o,r) Adds an element mapping rule to the table.

The MARC (1SO2709) Representation (.mar) Files

This file provides rules for representing a record in the ISO2709 format. The rules pertain mostly to the values of
the constant-length header of the record.

Field Structure and Character Sets

In order to provide a flexible approach to national character set handling, Zebra allows the administrator to
configure the set up the system to handle any 8-bit character set — including sets that require multi-octet
diacritics or other multi-octet characters. The definition of a character set includes a specification of the
permissible values, their sort order (this affects the display in the SCAN function), and relationships between
upper- and lowercase characters. Finally, the definition includes the specification of space characters for the set.

The operator can define different character sets for different fields, typical examples being standard text fields,
numerical fields, and special-purpose fields such as WWW-style linkages (URX).

44



Chapter 8. The Record Model

The field types, and hence character sets, are associated with data elements by the .abs files (see above). The file
default.idx provides the association between field type codes (as used in the .abs files) and the character map
files (with the .chr suffix). The format of the .idx file is as follows

indexfield type code

This directive introduces a new search index code. The argument is a one-character code to be used in the
.abs files to select this particular index type. An index, roughly, corresponds to a particular structure
attribute during search. Refer tioe Section calle@earchin Chapter 7

sortfield code type

This directive introduces a sort index. The argument is a one-character code to be used in the .abs fie to
select this particular index type. The corresponding use attribute must be used in the sort request to refer to
this particular sort index. The corresponding character map (see below) is used in the sort process.

completenesboolean

This directive enables or disables complete field indexing. The value dioibleanshould be 0 (disable) or

1. If completeness is enabled, the index entry will contain the complete contents of the field (up to a limit),
with words (non-space characters) separated by single space characters (normalized to " " on display).
When completeness is disabled, each word is indexed as a separate entry. Complete subfield indexing is
most useful for fields which are typically browsed (eg. titles, authors, or subjects), or instances where a
match on a complete subfield is essential (eg. exact title searching). For fields where completeness is
disabled, the search engine will interpret a search containing space characters as a word proximity search.

charmagfilename

This is the filename of the character map to be used for this index for field type.

The contents of the character map files are structured as follows:

lowercasevalue-set

This directive introduces the basic value set of the field type. The format is an ordered list (without spaces)
of the characters which may occur in "words" of the given type. The order of the entries in the list
determines the sort order of the index. In addition to single characters, the following combinations are legal:

- Backslashes may be used to introduce three-digit octal, or two-digit hex representations of single
characters (preceded RY. In addition, the combinations \\, \\r, \\n, \\t, \\s (space — remember that real
space-characters may not occur in the value definition), and \\ are recognized, with their usual
interpretation.

« Curly braces {} may be used to enclose ranges of single characters (possibly using the escape convention
described in the preceding point), eg. {a-z} to introduce the standard range of ASCII characters. Note
that the interpretation of such a range depends on the concrete representation in your local, physical
character set.

« paranthesises () may be used to enclose multi-byte characters - eg. diacritics or special national
combinations (eg. Spanish "lI"). When found in the input stream (or a search term), these characters are
viewed and sorted as a single character, with a sorting value depending on the position of the group in the
value statement.

45



Chapter 8. The Record Model

uppercas&alue-set

This directive introduces the upper-case equivalencis to the value set (if any). The number and order of the
entries in the list should be the same as inltlercase directive.

spacevalue-set

This directive introduces the character which separate words in the input stream. Depending on the
completeness mode of the field in question, these characters either terminate an index entry, or delimit
individual "words" in the input stream. The order of the elements is not significant — otherwise the
representation is the same as for tippercase andlowercase directives.

mapvalue-set target

This directive introduces a mapping between each of the members of the value-set on the left to the
character on the right. The character on the right must occur in the value seinghease directive) of

the character set, but it may be a paranthesis-enclosed multi-octet character. This directive may be used to
map diacritics to their base characters, or to map HTML-style character-representations to their natural
form, etc.

Exchange Formats

Converting records from the internal structure to en exchange format is largely an automatic process. Currently,
the following exchange formats are supported:

« GRS-1. The internal representation is based on GRS-1/XML, so the conversion here is straightforward. The
system will create applied variant and supported variant lists as required, if a record contains variant
information.

« XML. The internal representation is based on GRS-1/XML so the mapping is trivial. Note that XML schemas,
preprocessing instructions and comments are not part of the internal representation and therefore will never be
part of a generated XML record. Future versions of the Zebra will support that.

« SUTRS. Again, the mapping is fairly straightforward. Indentation is used to show the hierarchical structure of
the record. All "GRS" type records support both the GRS-1 and SUTRS representations.

« 1SO2709-based formats (USMARC, etc.). Only records with a two-level structure (corresponding to fields and
subfields) can be directly mapped to ISO2709. For records with a different structuring (eg., GILS), the
representation in a structure like USMARC involves a schema-mappingh@&ection calledhe Schema
Mapping (.map) Files to an "implied" USMARC schema (implied, because there is no formal schema which
specifies the use of the USMARC fields outside of ISO2709). The resultant, two-level record is then mapped
directly from the internal representation to 1ISO2709. See the GILS schema definition files for a detailed
example of this approach.

« Explain. This representation is only available for records belonging to the Explain schema.

- Summary. This ASN-1 based structure is only available for records belonging to the Summary schema - or
schema which provide a mapping to this schema (see the description of the schema mapping facility above).

« SOIF. Support for this syntax is experimental, and is currently keyed to a private Index Data OID
(1.2.840.10003.5.1000.81.2). All abstract syntaxes can be mapped to the SOIF format, although nested
elements are represented by concatenation of the tag names at each level.

46



Appendix A. License

Zebra Server, Copyright © 1995-2003 Index Data ApS.

Zebra is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

Zebra is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with Zebra; see the file
LICENSE.zebra. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

47



Appendix A. License

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program”, below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification”.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

48



Appendix A. License
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such

49



Appendix A. License

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

50



Appendix A. License

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is

implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

51



Appendix A. License

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

52



Appendix B. About Index Data and the Zebra
Server

Index Data is a consulting and software-development enterprise that specializes in library and information
management systems. Our interests and expertise span a broad range of related fields, and one of our primary,
long-term objectives is the development of a powerful information management system with open network
interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the networking
community, and to further the development of quality software for open network communication.

We'll be happy to answer questions about the software, and about ourselves in general.

Index Data ApS
Kgbmagergade 43, 2.

1150 Copenhagen K
Denmark

Phone +45 3341 0100

Fax +45 3341 0101

Email <info@indexdata.dk >

indexdata.dk (http://indexdata.dk/)

TheRandom House College DictionarQ75 edition offers this definition of the word "Zebra":

[ Zebra, n., any of several horselike, African mammals of the genus Equus, having a characteristic pattern of
black or dark-brown stripes on a whitish background. ]

53



