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Chapter 1. Introduction

Overview
Zebra (http://indexdata.dk/zebra/) is a high-performance, general-purpose structured text indexing and
retrieval engine. It reads records in a variety of input formats (eg. email, XML, MARC) and provides
access to them through a powerful combination of boolean search expressions and relevance-ranked
free-text queries.

Zebra supports large databases (tens of millions of records, tens of gigabytes of data). It allows safe,
incremental database updates on live systems. Because Zebra supports the industry-standard information
retrieval protocol, Z39.50, you can search Zebra databases using an enormous variety of programs and
toolkits, both commercial and free, which understand this protocol. Application libraries are available to
allow bespoke clients to be written in Perl, C, C++, Java, Tcl, Visual Basic, Python, PHP and more - see
the ZOOM web site (http://zoom.z3950.org/) for more information on some of these client toolkits.

This document is an introduction to the Zebra system. It explains how to compile the software, how to
prepare your first database, and how to configure the server to give you the functionality that you need.

Features
This is an overview of some of Zebra’s most important features:

• Very large databases: logical files can be automatically partitioned over multiple disks.

• Arbitrarily complex records. The internal data format is a structured format conceptually similar to
XML or GRS-1, which allows lists, nested structured data elements and variant forms of data.

• Robust updating - records can be added and deleted “on the fly” without rebuilding the index from
scratch. Records can be safely updated even while users are accessing the server. The update
procedure is tolerant to crashes or hard interrupts during database updating - data can be reconstructed
following a crash.

• Configurable to understand many input formats. A system of input filters driven by regular
expressions allows most ASCII-based data formats to be easily processed. SGML, XML, ISO2709
(MARC), and raw text are also supported.

• Searching supports a powerful combination of boolean queries as well as relevance-ranking
(free-text) queries. Truncation, masking, full regular expression matching and "approximate matching"
(eg. spelling mistakes) are all handled.

• Index-only databases: data can be, and usually is, imported into Zebra’s own storage, but Zebra can
also refer to external files, building and maintaining indexes of "live" collections.

• Zebra is written in portable C, so it runs on most Unix-like systems as well as Windows NT. A binary
distribution for Windows NT is available at http://ftp.indexdata.dk/pub/zebra/win32/, and pre-built
packages are available for some Linux distributions: Red Hat 7.x RPMs at
http://ftp.indexdata.dk/pub/zebra/RedHat7.X/ and Debian packages at
http://ftp.indexdata.dk/pub/zebra/debian/
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Chapter 1. Introduction

Z39.50 protocol support:

• Protocol facilities: Init, Search, Present (retrieval), Segmentation (support for very large records),
Delete, Scan (index browsing), Sort, Close and support for the “update” Extended Service to add or
replace an existing XML record.

• Piggy-backed presents are honored in the search request - that is, a subset of the found records can be
returned directly with a search response, enabling search and retrieval to happen in a single round-trip.

• Named result sets are supported.

• Easily configured to support different application profiles, with tables for attribute sets, tag sets, and
abstract syntaxes. Additional tables control facilities such as element mappings to different schema
(eg., GILS-to-USMARC).

• Complex composition specifications using Espec-1 (partial support). Element sets are defined using
the Espec-1 capability, and are specified in configuration files as simple element requests (and,
optionally, variant requests).

• Multiple record syntaxes for data retrieval: GRS-1, SUTRS, XML, ISO2709 (MARC), etc. Records
can be mapped between record syntaxes and schemas on the fly.

Applications
Zebra has been deployed in numerous applications, in both the academic and commercial worlds, in
application domains as diverse as bibliographic catalogues, geospatial information, structured vocabulary
browsing, government information locators, civic information systems, environmental observations,
museum information and web indexes.

Notable applications include the following:

DADS - the DTV Article Database Service

DADS is a huge database of more than ten million records, totalling over ten gigabytes of data. The
records are metadata about academic journal articles, primarily scientific; about 10% of these metadata
records link to the full text of the articles they describe, a body of about a terabyte of information
(although the full text is not indexed.)

It allows students and researchers at DTU (Danmarks Tekniske Universitet, the Technical College of
Denmark) to find and order articles from multiple databases in a single query. The database contains
literature on all engineering subjects. It’s available on-line through a web gateway, though currently only
to registered users.

More information can be found at http://www.dtv.dk/help/dads/index_e.htm
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NLI-Z39.50 - a Natural Language Interface for Libraries

Fernuniversität Hagen in Germany have developed a natural language interface for access to library
databases. http://ki212.fernuni-hagen.de/nli/NLIintro.html In order to evaluate this interface for recall
and precision, they chose Zebra as the basis for retrieval effectiveness. The Zebra server contains a copy
of the GIRT database, consisting of more than 76000 records in SGML format (bibliographic records
from social science), which are mapped to MARC for presentation.

(GIRT is the German Indexing and Retrieval Testdatabase. It is a standard German-language test
database for intelligent indexing and retrieval systems. See
http://www.gesis.org/forschung/informationstechnologie/clef-delos.htm)

Evaluation will take place as part of the TREC/CLEF campaign 2003 http://clef.iei.pi.cnr.it or
http://www4.eurospider.ch/CLEF/

For more information, contact Johannes Leveling <Johannes.Leveling@FernUni-Hagen.De >

ULS (Union List of Serials)

The M25-Link systems team (http://www.m25lib.ac.uk/M25link/) are involved in a project called ULS to
provide a union catalogue for periodicals in 21 member libraries. They do this with an unusual
architecture which they call a “non-distributed virtual union catalogue”.

The member libraries send in data files representing their periodicals, including both brief bibliographic
data and summary holdings. Then 21 individual Z39.50 targets are created, each using Zebra, and all
mounted on the single hardware server. The live service provides a web gateway allowing Z39.50
searching of all of the targets or a selection of them. Zebra’s small footprint allows a relatively modest
system to comfortably host the 21 servers.

More information can be found at http://www.m25lib.ac.uk/ULS/

Various web indexes

Zebra has been used by a variety of institutions to construct indexes of large web sites, typically in the
region of tens of millions of pages. In this role, it functions somewhat similarly to the engine of google
or altavista, but for a selected intranet or a subset of the whole Web.

For example, Liverpool University’s web-search facility (see on the home page at http://www.liv.ac.uk/
and many sub-pages) works by relevance-searching a Zebra database which is populated by the
Harvest-NG web-crawling software.

For more information on Liverpool university’s intranet search architecture, contact John Gilbertson
<jgilbert@liverpool.ac.uk >

Kang-Jin Lee <lee@arco.de >, has recently modified the Harvest web indexer to use Zebra as its native
repository engine. His comments on the switch over from the old engine are revealing:

The first results after some testing with Zebra are very promising. The tests were done with around 220,000
SOIF files, which occupies 1.6GB of disk space.

Building the index from scratch takes around one hour with Zebra where [old-engine] needs around five hours.
While [old-engine] blocks search requests when updating its index, Zebra can still answer search requests. [...]
Zebra supports incremental indexing which will speed up indexing even further.
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While the search time of [old-engine] varies from some seconds to some minutes depending how expensive the
query is, Zebra usually takes around one to three seconds, even for expensive queries. [...] Zebra can search
more than 100 times faster than [old-engine] and can process multiple search requests simultaneously

I am very happy to see such nice software available under GPL.

Support
You can get support for Zebra from at least three sources.

First, there’s the Zebra web site at http://indexdata.dk/zebra/, which always has the most recent version
available for download. If you have a problem with Zebra, the first thing to do is see whether it’s fixed in
the current release.

Second, there’s the Zebra mailing list. Its home page at http://indexdata.dk/mailman/listinfo/zebralist
includes a complete archive of all messages that have ever been posted on the list. The Zebra mailing list
is used both for announcements from the authors (new releases, bug fixes, etc.) and general discussion.
You are welcome to seek support there. Join by sending email to <zebra-request@indexdata.dk >
with the wordsubscribe in the body of the message.

Third, it’s possible to buy a commercial support contract, with well defined service levels and response
times, from Index Data. See http://indexdata.dk/support2/ for details.

Future Directions
These are some of the plans that we have for the software in the near and far future, ordered
approximately as we expect to work on them.

• Improved support for XML in search and retrieval. Eventually, the goal is for Zebra to pull double
duty as a flexible information retrieval engine and high-performance XML repository. The recent
addition of XPath searching is one example of the kind of enhancement we’re working on.

• Access to the search engine through SOAP/RPC API to allow the construction of applications without
requiring Z39.50 tools. This will shortly be available by means of Index Data’s SRW-to-Z39.50
gateway, currently in beta test.

• Finalisation and documentation of Zebra’s C programming API, allowing updates, database
management and other functions not readily expressed in Z39.50. We will also consider exposing the
API through SOAP.

• Support for the use of Perl both for access to the Zebra API and for building extension “plug-ins”
such as input filters. The code for this has been contributed to the source tree by Peter Popovics
<pop@indexdata.dk >, and is in the process of being integrated and tested.

• Improved free-text searching. We’re first and foremost octet jockeys and we’re actively looking for
organisations or people who’d like to contribute experience in relevance ranking and text searching.
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Programmers thrive on user feedback. If you are interested in a facility that you don’t see mentioned
here, or if there’s something you think we could do better, please drop us a mail. Better still, implement it
and send us the patches.

If you think it’s all really neat, you’re welcome to drop us a line saying that, too. You can email us on
<info@indexdata.dk > or check the contact info at the end of this manual.
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Chapter 2. Installation
Zebra is written in ANSI C and was implemented with portability in mind. We primarily use GCC on
UNIX and Microsoft Visual C++ on Windows.

The software is regularly tested on Debian GNU/Linux (http://www.debian.org/), Redhat Linux
(http://www.redhat.com/), Gentoo Linux (http://www.gentoo.org/), NetBSD (Cobalt)
(http://www.netbsd.org/Ports/cobalt/), FreeBSD (i386) (http://www.freebsd.org/), MAC OSX
(http://www.apple.com/macosx/), SunOS 5.8 (sparc) (http://wwws.sun.com/software/solaris/), Windows
2000 SP3 (http://www.microsoft.com/windows2000/).

Zebra can be configured to use the following utilities (most of which are optional):

yaz (http://www.indexdata.dk/yaz/) (required)

Zebra uses YAZ to support Z39.50/SRW. Also the memory management utilites from YAZ is used
by Zebra.

iconv (http://www.gnu.org/software/libiconv/) (optional)

Character set conversion. This is required if you’re going to use any other character set than UTF-8
and ISO-8859-1 for records. Note that some Unixes has iconv built-in.

Expat (http://expat.sourceforge.net/) (optional)

XML parser. If you’re going to index real XML you should install this (filter grs.xml). On most
systems you should be able to find binary Expat packages.

Perl (http://www.perl.com/) (optional)

Perl is required if you’re going to use the Zebra perl filter facility or the Zebra perl API. Perl is
preinstalled on many Unixes. We’ve not tried the Perl extension on Windows ourselves.

Tcl (http://www.tcl.tk/) (optional)

Tcl is required if you need to use the Tcl record filter for Zebra. You can find binary packages for
Tcl for many Unices and Windows.

Autoconf (http://www.gnu.org/software/autoconf/), Automake (http://www.gnu.org/software/automake/) (optional)

GNU Automake and Autoconf are only required if you’re using the CVS version of Zebra. You do
not need these if you have fetched a Zebra tar.

Docbook (http://docbook.org/) and friends (optional)

These tools are only required if you’re writing documentation for Zebra. You need the following
Debian packages: jadetex, docbook, docbook-dsssl, docbook-xml, docbook-utils.

UNIX
On Unix,gcc works fine, but any native C compiler should be possible to use as long as it is ANSI C
compliant.
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Unpack the distribution archive. Theconfigure shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to create aMakefile in each
directory of Zebra.

To run the configure script type:

./configure

The configure script attempts to use C compiler specified by theCCenvironment variable. If this is not
set,cc or GNU C will be used. TheCFLAGSenvironment variable holds options to be passed to the C
compiler. If you’re using a Bourne-shell compatible shell you may pass something like this:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

The configure script support various options: you can see what they are with

./configure --help

Once the build environment is configured, build the software by typing:

make

If the build is successful, two executables are created in the sub-directoryindex :

zebrasrv

The Z39.50 server and search engine.

zebraidx

The administrative indexing tool.

You can now use Zebra. If you wish to install it system-wide, then as root type

make install

By default this will install the Zebra executables in/usr/local/bin , and the standard configuration
files in /usr/local/share/idzebra You can override this with the--prefix option to configure.
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WIN32
[to be written]
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Chapter 3. Quick Start
In this section, we will test the system by indexing a small set of sample GILS records that are included
with the Zebra distribution, running Zebra a server against the newly created database, and searching the
indexes with a client that connects to that server.

Go to theexamples/gils subdirectory of the distribution archive. The 48 test records are located in the
sub directoryrecords . To index these, type:

zebraidx update records

In this command, the wordupdate is followed by the name of a directory:zebraidx updates all files in
the hierarchy rooted at that directory.

If your indexing command was successful, you are now ready to fire up a server. To start a server on port
2100, type:

zebrasrv @:2100

The Zebra index that you have just created has a single database namedDefault . The database contains
records structured according to the GILS profile, and the server will return records in USMARC, GRS-1,
or SUTRS format depending on what the client asks for.

To test the server, you can use any Z39.50 client. For instance, you can use the demo command-line
client that comes with YAZ:

yaz-client localhost:2100

When the client has connected, you can type:

Z> find surficial
Z> show 1

The default retrieval syntax for the client is USMARC, and the default element set isF (“full record”). To
try other formats and element sets for the same record, try:

Z>format sutrs
Z>show 1
Z>format grs-1
Z>show 1
Z>format xml
Z>show 1

9



Chapter 3. Quick Start

Z>elements B
Z>show 1

Note: You may notice that more fields are returned when your client requests SUTRS, GRS-1 or
XML records. This is normal - not all of the GILS data elements have mappings in the USMARC
record format.

If you’ve made it this far, you know that your installation is working, but there’s a certain amount of
voodoo going on - for example, the mysterious incantations in thezebra.cfg file. In order to help us
understand these fully, the next chapter will work through a series of increasingly complex example
configurations.
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Chapter 4. Example Configurations

Overview
zebraidx andzebrasrv are both driven by a master configuration file, which may refer to other
subsidiary configuration files. By default, they try to usezebra.cfg in the working directory as the
master file; but this can be changed using the-c option to specify an alternative master configuration file.

The master configuration file tells Zebra:

• Where to find subsidiary configuration files, including both those that are named explicitly and a few
“magic” files such asdefault.idx , which specifies the default indexing rules.

• What record schemas to support. (Subsidiary files specifiy how to index the contents of records in
those schemas, and what format to use when presenting records in those schemas to client software.)

• What attribute sets to recognise in searches. (Subsidiary files specify how to interpret the attributes in
terms of the indexes that are created on the records.)

• Policy details such as what type of input format to expect when adding new records, what low-level
indexing algorithm to use, how to identify potential duplicate records, etc.

Now let’s see what goes in thezebra.cfg file for some example configurations.

Example 1: XML Indexing And Searching
This example shows how Zebra can be used with absolutely minimal configuration to index a body of
XML (http://www.w3.org/XML/) documents, and search them using XPath
(http://www.w3.org/TR/xpath) expressions to specify access points.

Go to theexamples/zthes subdirectory of the distribution archive. There you will find aMakefile

that will populate therecords subdirectory with a file of Zthes (http://zthes.z3950.org/) records
representing a taxonomic hierarchy of dinosaurs. (The records are generated from the family tree in the
file dino.tree .) Typemake records/dino.xml to make the XML data file. (Or you could just type
make dino to build the XML data file, create the database and populate it with the taxonomic records
all in one shot - but then you wouldn’t learn anything, would you? :-)

Now we need to create a Zebra database to hold and index the XML records. We do this with the Zebra
indexer,zebraidx , which is driven by thezebra.cfg configuration file. For our purposes, we don’t
need any special behaviour - we can use the defaults - so we can start with a minimal file that just tells
zebraidx where to find the default indexing rules, and how to parse the records:

profilePath: .:../../tab
recordType: grs.sgml
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That’s all you need for a minimal Zebra configuration. Now you can roll the XML records into the
database and build the indexes:

zebraidx update records

Now start the server. Like the indexer, its behaviour is controlled by thezebra.cfg file; and like the
indexer, it works just fine with this minimal configuration.

zebrasrv

By default, the server listens on IP port number 9999, although this can easily be changed - seethe
Section calledRunning the Z39.50 Server (zebrasrv)in Chapter 7.

Now you can use the Z39.50 client program of your choice to execute XPath-based boolean queries and
fetch the XML records that satisfy them:

$ yaz-client @:9999
Connecting...Ok.
Z> find @attr 1=/Zthes/termName Sauroposeidon
Number of hits: 1
Z> format xml
Z> show 1
<Zthes>

<termId>22</termId>
<termName>Sauroposeidon</termName>
<termType>PT</termType>
<termNote>The tallest known dinosaur (18m)</termNote>
<relation>

<relationType>BT</relationType>
<termId>21</termId>
<termName>Brachiosauridae</termName>
<termType>PT</termType>

</relation>

<idzebra xmlns="http://www.indexdata.dk/zebra/">
<size>300</size>
<localnumber>23</localnumber>
<filename>records/dino.xml</filename>

</idzebra>
</Zthes>

Now wasn’t that nice and easy?
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Chapter 4. Example Configurations

Example 2: Supporting Interoperable Searches
The problem with the previous example is that you need to know the structure of the documents in order
to find them. For example, when we wanted to find the record for the taxonSauroposeidon, we had to
formulate a complex XPath/Zthes/termName which embodies the knowledge that taxon names are
specified in a<termName> element inside the top-level<Zthes> element.

This is bad not just because it requires a lot of typing, but more significantly because it ties searching
semantics to the physical structure of the searched records. You can’t use the same search specification to
search two databases if their internal representations are different. Consider an different taxonomy
database in which the records have taxon names specified inside a<name> element nested within a
<identification> element inside a top-level<taxon> element: then you’d need to search for them
using1=/taxon/identification/name

How, then, can we build broadcasting Information Retrieval applications that look for records in many
different databases? The Z39.50 protocol offers a powerful and general solution to this: abstract “access
points”. In the Z39.50 model, an access point is simply a point at which searches can be directed.
Nothing is said about implementation: in a given database, an access point might be implemented as an
index, a path into physical records, an algorithm for interrogating relational tables or whatever works.
The only important thing point is that the semantics of an access point are fixed and well defined.

For convenience, access points are gathered intoattribute sets. For example, the BIB-1 attribute set is
supposed to contain bibliographic access points such as author, title, subject and ISBN; the GEO
attribute set contains access points pertaining to geospatial information (bounding coordinates, stratum,
latitude resolution, etc.); the CIMI attribute set contains access points to do with museum collections
(provenance, inscriptions, etc.)

In practice, the BIB-1 attribute set has tended to be a dumping ground for all sorts of access points, so
that, for example, it includes some geospatial access points as well as strictly bibliographic ones.
Nevertheless, this model allows a layer of abstraction over the physical representation of records in
databases.

In the BIB-1 attribute set, a taxon name is probably best interpreted as a title - that is, a phrase that
identifies the item in question. BIB-1 represents title searches by access point 4. (See The BIB-1
Attribute Set Semantics (ftp://ftp.loc.gov/pub/z3950/defs/bib1.txt)) So we need to configure our dinosaur
database so that searches for BIB-1 access point 4 look in the<termName> element, inside the top-level
<Zthes> element.

This is a two-step process. First, we need to tell Zebra that we want to support the BIB-1 attribute set.
Then we need to tell it which elements of its record pertain to access point 4.

We need to create anAbstract Syntax filenamed after the document element of the records we’re
working with, plus a.abs suffix - in this case,Zthes.abs - as follows:

attset zthes.att ➊

attset bib1.att ➋

xpath enable
systag sysno none

xelm /Zthes/termId termId:w ➌

xelm /Zthes/termName termName:w,title:w ➍

xelm /Zthes/termQualifier termQualifier:w
xelm /Zthes/termType termType:w

13



Chapter 4. Example Configurations

xelm /Zthes/termLanguage termLanguage:w
xelm /Zthes/termNote termNote:w
xelm /Zthes/termCreatedDate termCreatedDate:w
xelm /Zthes/termCreatedBy termCreatedBy:w
xelm /Zthes/termModifiedDate termModifiedDate:w
xelm /Zthes/termModifiedBy termModifiedBy:w

➊ Declare Thesausus attribute set. Seezthes.att .

➋ Declare Bib-1 attribute set. Seebib1.att in Zebra’stab directory.

➌ This xelm directive selects contents of nodes by XPath expression/Zthes/termId . The contents
(CDATA) will be word searchable by Zthes attribute termId (value 1001).

➍ Make termName word searchable by both Zthes attribute termName (1002) and Bib-1 atttribute
title (4).

After re-indexing, we can search the database using Bib-1 attribute, title, as follows:

Z> form xml
Z> f @attr 1=4 Eoraptor
Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 1, setno 1
SearchResult-1: Eoraptor(1)
records returned: 0
Elapsed: 0.106896
Z> s
Sent presentRequest (1+1).
Records: 1
[Default]Record type: XML
<Zthes>

<termId>2</termId>
<termName>Eoraptor</termName>
<termType>PT</termType>
<termNote>The most basal known dinosaur</termNote>
...
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Chapter 5. Administrating Zebra
Unlike many simpler retrieval systems, Zebra supports safe, incremental updates to an existing index.

Normally, when Zebra modifies the index it reads a number of records that you specify. Depending on
your specifications and on the contents of each record one the following events take place for each
record:

Insert

The record is indexed as if it never occurred before. Either the Zebra system doesn’t know how to
identify the record or Zebra can identify the record but didn’t find it to be already indexed.

Modify

The record has already been indexed. In this case either the contents of the record or the location
(file) of the record indicates that it has been indexed before.

Delete

The record is deleted from the index. As in the update-case it must be able to identify the record.

Please note that in both the modify- and delete- case the Zebra indexer must be able to generate a unique
key that identifies the record in question (more on this below).

To administrate the Zebra retrieval system, you run thezebraidx program. This program supports a
number of options which are preceded by a dash, and a few commands (not preceded by dash).

Both the Zebra administrative tool and the Z39.50 server share a set of index files and a global
configuration file. The name of the configuration file defaults tozebra.cfg . The configuration file
includes specifications on how to index various kinds of records and where the other configuration files
are located.zebrasrv andzebraidx mustbe run in the directory where the configuration file lives
unless you indicate the location of the configuration file by option-c .

Record Types
Indexing is a per-record process, in which either insert/modify/delete will occur. Before a record is
indexed search keys are extracted from whatever might be the layout the original record (sgml,html,text,
etc..). The Zebra system currently supports two fundamental types of records: structured and simple text.
To specify a particular extraction process, use either the command line option-t or specify a
recordType setting in the configuration file.

The Zebra Configuration File
The Zebra configuration file, read byzebraidx andzebrasrv defaults tozebra.cfg unless specified
by -c option.

You can edit the configuration file with a normal text editor. parameter names and values are separated by
colons in the file. Lines starting with a hash sign (#) are treated as comments.

15



Chapter 5. Administrating Zebra

If you manage different sets of records that share common characteristics, you can organize the
configuration settings for each type into "groups". Whenzebraidx is run and you wish to address a
given group you specify the group name with the-g option. In this case settings that have the group
name as their prefix will be used byzebraidx . If no -g option is specified, the settings without prefix
are used.

In the configuration file, the group name is placed before the option name itself, separated by a dot (.).
For instance, to set the record type for grouppublic to grs.sgml (the SGML-like format for structured
records) you would write:

public.recordType: grs.sgml

To set the default value of the record type totext write:

recordType: text

The available configuration settings are summarized below. They will be explained further in the
following sections.

group.recordType[.name]: type

Specifies how records with the file extensionnameshould be handled by the indexer. This option
may also be specified as a command line option (-t ). Note that if you do not specify aname, the
setting applies to all files. In general, the record type specifier consists of the elements (each
element separated by dot),fundamental-type, file-read-typeand arguments. Currently, two
fundamental types exist,text andgrs .

group.recordId:record-id-spec

Specifies how the records are to be identified when updated. Seethe Section calledLocating
Records.

group.database:database

Specifies the Z39.50 database name.

group.storeKeys:boolean

Specifies whether key information should be saved for a given group of records. If you plan to
update/delete this type of records later this should be specified as 1; otherwise it should be 0
(default), to save register space. Seethe Section calledIndexing with File Record IDs.

group.storeData:boolean

Specifies whether the records should be stored internally in the Zebra system files. If you want to
maintain the raw records yourself, this option should be false (0). If you want Zebra to take care of
the records for you, it should be true(1).
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register:register-location

Specifies the location of the various register files that Zebra uses to represent your databases. See
the Section calledRegister Location.

shadow:register-location

Enables thesafe updatefacility of Zebra, and tells the system where to place the required,
temporary files. Seethe Section calledSafe Updating - Using Shadow Registers.

lockDir: directory

Directory in which various lock files are stored.

keyTmpDir:directory

Directory in which temporary files used during zebraidx’s update phase are stored.

setTmpDir:directory

Specifies the directory that the server uses for temporary result sets. If not specified/tmp will be
used.

profilePath:path

Specifies a path of profile specification files. The path is composed of one or more directories
separated by colon. Similar to PATH for UNIX systems.

attset:filename

Specifies the filename(s) of attribute set files for use in searching. At least the Bib-1 set should be
loaded (bib1.att ). TheprofilePath setting is used to look for the specified files. Seethe
Section calledThe Attribute Set (.att) Filesin Chapter 8

memMax:size

Specifiessize of internal memory to use for the zebraidx program. The amount is given in
megabytes - default is 4 (4 MB).

root:dir

Specifies a directory base for Zebra. All relative paths given (in profilePath, register, shadow) are
based on this directory. This setting is useful if your Zebra server is running in a different directory
from wherezebra.cfg is located.

Locating Records
The default behavior of the Zebra system is to reference the records from their original location, i.e.
where they were found when you ranzebraidx . That is, when a client wishes to retrieve a record
following a search operation, the files are accessed from the place where you originally put them - if you
remove the files (without runningzebraidx again, the server will return diagnostic number 14 (“System
error in presenting records”) to the client.
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If your input files are not permanent - for example if you retrieve your records from an outside source, or
if they were temporarily mounted on a CD-ROM drive, you may want Zebra to make an internal copy of
them. To do this, you specify 1 (true) in thestoreData setting. When the Z39.50 server retrieves the
records they will be read from the internal file structures of the system.

Indexing with no Record IDs (Simple Indexing)
If you have a set of records that are not expected to change over time you may can build your database
without record IDs. This indexing method uses less space than the other methods and is simple to use.

To use this method, you simply omit therecordId entry for the group of files that you index. To add a
set of records you usezebraidx with theupdate command. Theupdate command will always add all
of the records that it encounters to the index - whether they have already been indexed or not. If the set of
indexed files change, you should delete all of the index files, and build a new index from scratch.

Consider a system in which you have a group of text files calledsimple . That group of records should
belong to a Z39.50 database calledtextbase . The followingzebra.cfg file will suffice:

profilePath: /usr/local/idzebra/tab
attset: bib1.att
simple.recordType: text
simple.database: textbase

Since the existing records in an index can not be addressed by their IDs, it is impossible to delete or
modify records when using this method.

Indexing with File Record IDs
If you have a set of files that regularly change over time: Old files are deleted, new ones are added, or
existing files are modified, you can benefit from using thefile ID indexing methodology. Examples of
this type of database might include an index of WWW resources, or a USENET news spool area. Briefly
speaking, the file key methodology uses the directory paths of the individual records as a unique
identifier for each record. To perform indexing of a directory with file keys, again, you specify the
top-level directory after theupdate command. The command will recursively traverse the directories
and compare each one with whatever have been indexed before in that same directory. If a file is new (not
in the previous version of the directory) it is inserted into the registers; if a file was already indexed and it
has been modified since the last update, the index is also modified; if a file has been removed since the
last visit, it is deleted from the index.

The resulting system is easy to administrate. To delete a record you simply have to delete the
corresponding file (say, with therm command). And to add records you create new files (or directories
with files). For your changes to take effect in the register you must runzebraidx update with the
same directory root again. This mode of operation requires more disk space than simpler indexing
methods, but it makes it easier for you to keep the index in sync with a frequently changing set of data. If
you combine this system with thesafe updatefacility (see below), you never have to take your server
off-line for maintenance or register updating purposes.
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To enable indexing with pathname IDs, you must specifyfile as the value ofrecordId in the
configuration file. In addition, you should setstoreKeys to 1, since the Zebra indexer must save
additional information about the contents of each record in order to modify the indexes correctly at a
later time.

For example, to update records of groupesdd located below/data1/records/ you should type:

$ zebraidx -g esdd update /data1/records

The corresponding configuration file includes:

esdd.recordId: file
esdd.recordType: grs.sgml
esdd.storeKeys: 1

Note: You cannot start out with a group of records with simple indexing (no record IDs as in the
previous section) and then later enable file record Ids. Zebra must know from the first time that you
index the group that the files should be indexed with file record IDs.

You cannot explicitly delete records when using this method (using thedelete command tozebraidx .
Instead you have to delete the files from the file system (or move them to a different location) and then
run zebraidx with theupdate command.

Indexing with General Record IDs
When using this method you construct an (almost) arbitrary, internal record key based on the contents of
the record itself and other system information. If you have a group of records that explicitly associates an
ID with each record, this method is convenient. For example, the record format may contain a title or a
ID-number - unique within the group. In either case you specify the Z39.50 attribute set and use-attribute
location in which this information is stored, and the system looks at that field to determine the identity of
the record.

As before, the record ID is defined by therecordId setting in the configuration file. The value of the
record ID specification consists of one or more tokens separated by whitespace. The resulting ID is
represented in the index by concatenating the tokens and separating them by ASCII value (1).

There are three kinds of tokens:

Internal record info

The token refers to a key that is extracted from the record. The syntax of this token is( set, use) ,
wheresetis the attribute set nameuseis the name or value of the attribute.
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System variable

The system variables are preceded by

$

and immediately followed by the system variable name, which may one of

group

Group name.

database

Current database specified.

type

Record type.

Constant string

A string used as part of the ID — surrounded by single- or double quotes.

For instance, the sample GILS records that come with the Zebra distribution contain a unique ID in the
data tagged Control-Identifier. The data is mapped to the Bib-1 use attribute Identifier-standard (code
1007). To use this field as a record id, specify(bib1,Identifier-standard) as the value of the
recordId in the configuration file. If you have other record types that uses the same field for a different
purpose, you might add the record type (or group or database name) to the record id of the gils records as
well, to prevent matches with other types of records. In this case the recordId might be set like this:

gils.recordId: $type (bib1,Identifier-standard)

(seethe Section calledConfiguring Your Data Modelin Chapter 8for details of how the mapping
between elements of your records and searchable attributes is established).

As for the file record ID case described in the previous section, updating your system is simply a matter
of runningzebraidx with theupdate command. However, the update with general keys is
considerably slower than with file record IDs, since all files visited must be (re)read to discover their IDs.

As you might expect, when using the general record IDs method, you can only add or modify existing
records with theupdate command. If you wish to delete records, you must use the,delete command,
with a directory as a parameter. This will remove all records that match the files below that root directory.

Register Location
Normally, the index files that form dictionaries, inverted files, record info, etc., are stored in the directory
where you runzebraidx . If you wish to store these, possibly large, files somewhere else, you must add
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theregister entry to thezebra.cfg file. Furthermore, the Zebra system allows its file structures to
span multiple file systems, which is useful for managing very large databases.

The value of theregister setting is a sequence of tokens. Each token takes the form:

dir : size .

Thedir specifies a directory in which index files will be stored and thesizespecifies the maximum size
of all files in that directory. The Zebra indexer system fills each directory in the order specified and use
the next specified directories as needed. Thesizeis an integer followed by a qualifier code,b for bytes,k
for kilobytes.Mfor megabytes,G for gigabytes.

For instance, if you have allocated two disks for your register, and the first disk is mounted on/d1 and
has 2GB of free space and the second, mounted on/d2 has 3.6 GB, you could put this entry in your
configuration file:

register: /d1:2G /d2:3600M

Note that Zebra does not verify that the amount of space specified is actually available on the directory
(file system) specified - it is your responsibility to ensure that enough space is available, and that other
applications do not attempt to use the free space. In a large production system, it is recommended that
you allocate one or more file system exclusively to the Zebra register files.

Safe Updating - Using Shadow Registers

Description

The Zebra server supportsupdatingof the index structures. That is, you can add, modify, or remove
records from databases managed by Zebra without rebuilding the entire index. Since this process
involves modifying structured files with various references between blocks of data in the files, the update
process is inherently sensitive to system crashes, or to process interruptions: Anything but a successfully
completed update process will leave the register files in an unknown state, and you will essentially have
no recourse but to re-index everything, or to restore the register files from a backup medium. Further,
while the update process is active, users cannot be allowed to access the system, as the contents of the
register files may change unpredictably.

You can solve these problems by enabling the shadow register system in Zebra. During the updating
procedure,zebraidx will temporarily write changes to the involved files in a set of "shadow files",
without modifying the files that are accessed by the active server processes. If the update procedure is
interrupted by a system crash or a signal, you simply repeat the procedure - the register files have not
been changed or damaged, and the partially written shadow files are automatically deleted before the
new updating procedure commences.

At the end of the updating procedure (or in a separate operation, if you so desire), the system enters a
"commit mode". First, any active server processes are forced to access those blocks that have been
changed from the shadow files rather than from the main register files; the unmodified blocks are still
accessed at their normal location (the shadow files are not a complete copy of the register files - they only
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contain those parts that have actually been modified). If the commit process is interrupted at any point
during the commit process, the server processes will continue to access the shadow files until you can
repeat the commit procedure and complete the writing of data to the main register files. You can perform
multiple update operations to the registers before you commit the changes to the system files, or you can
execute the commit operation at the end of each update operation. When the commit phase has
completed successfully, any running server processes are instructed to switch their operations to the new,
operational register, and the temporary shadow files are deleted.

How to Use Shadow Register Files

The first step is to allocate space on your system for the shadow files. You do this by adding ashadow

entry to thezebra.cfg file. The syntax of theshadow entry is exactly the same as for theregister

entry (seethe Section calledRegister Location). The location of the shadow area should bedifferentfrom
the location of the main register area (if you have specified one - remember that if you provide no
register setting, the default register area is the working directory of the server and indexing processes).

The following excerpt from azebra.cfg file shows one example of a setup that configures both the
main register location and the shadow file area. Note that two directories or partitions have been set aside
for the shadow file area. You can specify any number of directories for each of the file areas, but
remember that there should be no overlaps between the directories used for the main registers and the
shadow files, respectively.

register: /d1:500M

shadow: /scratch1:100M /scratch2:200M

When shadow files are enabled, an extra command is available at thezebraidx command line. In order
to make changes to the system take effect for the users, you’ll have to submit a "commit" command after
a (sequence of) update operation(s).

$ zebraidx update /d1/records
$ zebraidx commit

Or you can execute multiple updates before committing the changes:

$ zebraidx -g books update /d1/records /d2/more-records
$ zebraidx -g fun update /d3/fun-records
$ zebraidx commit

If one of the update operations above had been interrupted, the commit operation on the last line would
fail: zebraidx will not let you commit changes that would destroy the running register. You’ll have to
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rerun all of the update operations since your last commit operation, before you can commit the new
changes.

Similarly, if the commit operation fails,zebraidx will not let you start a new update operation before
you have successfully repeated the commit operation. The server processes will keep accessing the
shadow files rather than the (possibly damaged) blocks of the main register files until the commit
operation has successfully completed.

You should be aware that update operations may take slightly longer when the shadow register system is
enabled, since more file access operations are involved. Further, while the disk space required for the
shadow register data is modest for a small update operation, you may prefer to disable the system if you
are adding a very large number of records to an already very large database (we use the termslargeand
modestvery loosely here, since every application will have a different perception of size). To update the
system without the use of the the shadow files, simply runzebraidx with the-n option (note that you
do not have to execute thecommitcommand ofzebraidx when you temporarily disable the use of the
shadow registers in this fashion. Note also that, just as when the shadow registers are not enabled, server
processes will be barred from accessing the main register while the update procedure takes place.
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(zebraidx)

The following is a complete reference to the command line interface to thezebraidx application.

Syntax

$ zebraidx [options] command [directory] ...

Options:

-t type

Update all files astype . Currently, the types supported aretext andgrs .subtype . If no
subtype is provided for the GRS (General Record Structure) type, the canonical input format is
assumed (seethe Section calledLocal Representationin Chapter 8). Generally, it is probably
advisable to specify the record types in thezebra.cfg file (seethe Section calledRecord Typesin
Chapter 5), to avoid confusion at subsequent updates.

-c config-file

Read the configuration fileconfig-file instead ofzebra.cfg .

-g group

Update the files according to the group settings forgroup (seethe Section calledThe Zebra
Configuration Filein Chapter 5).

-d database

The records located should be associated with the database namedatabase for access through
the Z39.50 server.

-l file

Write log messages tofile instead ofstderr .

-m mbytes

Usembytes of memory before flushing keys to background storage. This setting affects
performance when updating large databases.

-n

Disable the use of shadow registers for this operation (seethe Section calledSafe Updating - Using
Shadow Registersin Chapter 5).

-s

Show analysis of the indexing process. The maintenance program works in a read-only mode and
doesn’t change the state of the index. This options is very useful when you wish to test a new profile.
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-V

Show Zebra version.

-v level

Set the log level tolevel . level should be one ofnone , debug , andall .

Commands

updatedirectory

Update the register with the files contained indirectory . If no directory is provided, a list of
files is read fromstdin . SeeChapter 5.

deletedirectory

Remove the records corresponding to the files found underdirectory from the register.

commit

Write the changes resulting from the lastupdate commands to the register. This command is only
available if the use of shadow register files is enabled (seethe Section calledSafe Updating - Using
Shadow Registersin Chapter 5).
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Running the Z39.50 Server (zebrasrv)
Syntax

zebrasrv [options] [listener-address ...]

Options

-aAPDU file

Specify a file for dumping PDUs (for diagnostic purposes). The special name "-" sends output to
stderr .

-c config-file

Read configuration information fromconfig-file . The default configuration is./zebra.cfg .

-S

Don’t fork on connection requests. This can be useful for symbolic-level debugging. The server can
only accept a single connection in this mode.

-z

Use the Z39.50 protocol. Currently the only protocol supported. The option is retained for
historical reasons, and for future extensions.

-l logfile

Specify an output file for the diagnostic messages. The default is to write this information to
stderr .

-v log-level

The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,all,none}.

-u username

Set user ID. Sets the real UID of the server process to that of the givenusername . It’s useful if
you aren’t comfortable with having the server run as root, but you need to start it as such to bind a
privileged port.

-w working-directory

Change working directory.

-i

Run under the Internet superserver,inetd . Make sure you use the logfile option-l in conjunction
with this mode and specify the-l option before any other options.
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-t timeout

Set the idle session timeout (default 60 minutes).

-k kilobytes

Set the (approximate) maximum size of present response messages. Default is 1024 KB (1 MB).

A listener-address consists of an optional transport mode followed by a colon (:) followed by a
listener address. The transport mode is eitherssl or tcp (default).

For TCP, an address has the form

hostname | IP-number [: portnumber]

The port number defaults to 210 (standard Z39.50 port) for privileged users (root), and 9999 for normal
users.

Examples

tcp:@

ssl:@:3000

In both cases, the special hostname "@" is mapped to the address INADDR_ANY, which causes the
server to listen on any local interface. To start the server listening on the registered port for Z39.50, and
to drop root privileges once the ports are bound, execute the server like this (from a root shell):

zebrasrv -u daemon @

You can replacedaemon with another user, eg. your own account, or a dedicated IR server account.

The default behavior forzebrasrv is to establish a single TCP/IP listener, for the Z39.50 protocol, on
port 9999.

Z39.50 Protocol Support and Behavior

Initialization

During initialization, the server will negotiate to version 3 of the Z39.50 protocol, and the option bits for
Search, Present, Scan, NamedResultSets, and concurrentOperations will be set, if requested by the client.
The maximum PDU size is negotiated down to a maximum of 1 MB by default.
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Search

The supported query type are 1 and 101. All operators are currently supported with the restriction that
only proximity units of type "word" are supported for the proximity operator. Queries can be arbitrarily
complex. Named result sets are supported, and result sets can be used as operands without limitations.
Searches may span multiple databases.

The server has full support for piggy-backed retrieval (see also the following section).

Useattributes are interpreted according to the attribute sets which have been loaded in thezebra.cfg

file, and are matched against specific fields as specified in the.abs file which describes the profile of the
records which have been loaded. If no Use attribute is provided, a default of Bib-1 Any is assumed.

If a Structureattribute ofPhraseis used in conjunction with aCompletenessattribute ofComplete
(Sub)field, the term is matched against the contents of the phrase (long word) register, if one exists for the
givenUseattribute. A phrase register is created for those fields in the.abs file that contains ap-specifier.

If Structure=Phraseis used in conjunction withIncomplete Field- the default value forCompleteness,
the search is directed against the normal word registers, but if the term contains multiple words, the term
will only match if all of the words are found immediately adjacent, and in the given order. The word
search is performed on those fields that are indexed as typew in the .abs file.

If the Structureattribute isWord List, Free-form Text, or Document Text, the term is treated as a
natural-language, relevance-ranked query. This search type uses the word register, i.e. those fields that
are indexed as typew in the .abs file.

If the Structureattribute isNumeric Stringthe term is treated as an integer. The search is performed on
those fields that are indexed as typen in the .abs file.

If the Structureattribute isURx the term is treated as a URX (URL) entity. The search is performed on
those fields that are indexed as typeu in the .abs file.

If the Structureattribute isLocal Numberthe term is treated as native Zebra Record Identifier.

If the Relationattribute isEquals(default), the term is matched in a normal fashion (modulo truncation
and processing of individual words, if required). IfRelationis Less Than, Less Than or Equal, Greater
than, or Greater than or Equal, the term is assumed to be numerical, and a standard regular expression is
constructed to match the given expression. IfRelationis Relevance, the standard natural-language query
processor is invoked.

For theTruncationattribute,No Truncationis the default.Left Truncationis not supported.Process # in
search termis supported, as isRegxp-1. Regxp-2enables the fault-tolerant (fuzzy) search. As a default, a
single error (deletion, insertion, replacement) is accepted when terms are matched against the register
contents.

Regular expressions

Each term in a query is interpreted as a regular expression if the truncation value is eitherRegxp-1(102)
or Regxp-2(103). Both query types follow the same syntax with the operands:

x

Matches the characterx.
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.

Matches any character.

[ ..]

Matches the set of characters specified; such as[abc] or [a-c] .

and the operators:

x*

Matchesx zero or more times. Priority: high.

x+

Matchesx one or more times. Priority: high.

x?

Matchesx zero or once. Priority: high.

xy

Matchesx, theny. Priority: medium.

x|y

Matches eitherx or y. Priority: low.

The order of evaluation may be changed by using parentheses.

If the first character of theRegxp-2query is a plus character (+) it marks the beginning of a section with
non-standard specifiers. The next plus character marks the end of the section. Currently Zebra only
supports one specifier, the error tolerance, which consists one digit.

Since the plus operator is normally a suffix operator the addition to the query syntax doesn’t violate the
syntax for standard regular expressions.

Query examples

Phrase search forinformation retrievalin the title-register:

@attr 1=4 "information retrieval"

Ranked search for the same thing:

@attr 1=4 @attr 2=102 "Information retrieval"

Phrase search with a regular expression:

@attr 1=4 @attr 5=102 "informat.* retrieval"
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Ranked search with a regular expression:

@attr 1=4 @attr 5=102 @attr 2=102 "informat.* retrieval"

In the GILS schema (gils.abs ), the west-bounding-coordinate is indexed as typen, and is therefore
searched by specifyingstructure=Numeric String. To match all those records with
west-bounding-coordinate greater than -114 we use the following query:

@attr 4=109 @attr 2=5 @attr gils 1=2038 -114

Present

The present facility is supported in a standard fashion. The requested record syntax is matched against the
ones supported by the profile of each record retrieved. If no record syntax is given, SUTRS is the default.
The requested element set name, again, is matched against any provided by the relevant record profiles.

Scan

The attribute combinations provided with the termListAndStartPoint are processed in the same way as
operands in a query (see above). Currently, only the term and the globalOccurrences are returned with
the termInfo structure.

Sort

Z39.50 specifies three different types of sort criteria. Of these Zebra supports the attribute specification
type in which case the use attribute specifies the "Sort register". Sort registers are created for those fields
that are of type "sort" in the default.idx file. The corresponding character mapping file in default.idx
specifies the ordinal of each character used in the actual sort.

Z39.50 allows the client to specify sorting on one or more input result sets and one output result set.
Zebra supports sorting on one result set only which may or may not be the same as the output result set.

Close

If a Close PDU is received, the server will respond with a Close PDU with reason=FINISHED, no matter
which protocol version was negotiated during initialization. If the protocol version is 3 or more, the
server will generate a Close PDU under certain circumstances, including a session timeout (60 minutes
by default), and certain kinds of protocol errors. Once a Close PDU has been sent, the protocol
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association is considered broken, and the transport connection will be closed immediately upon receipt
of further data, or following a short timeout.
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The Zebra system is designed to support a wide range of data management applications. The system can
be configured to handle virtually any kind of structured data. Each record in the system is associated with
a record schemawhich lends context to the data elements of the record. Any number of record schemas
can coexist in the system. Although it may be wise to use only a single schema within one database, the
system poses no such restrictions.

The record model described in this chapter applies to the fundamental, structured record typegrs ,
introduced inthe Section calledRecord Typesin Chapter 5.

Records pass through three different states during processing in the system.

• When records are accessed by the system, they are represented in their local, or native format. This
might be SGML or HTML files, News or Mail archives, MARC records. If the system doesn’t already
know how to read the type of data you need to store, you can set up an input filter by preparing
conversion rules based on regular expressions and possibly augmented by a flexible scripting language
(Tcl). The input filter produces as output an internal representation, a tree structure.

• When records are processed by the system, they are represented in a tree-structure, constructed by
tagged data elements hanging off a root node. The tagged elements may contain data or yet more
tagged elements in a recursive structure. The system performs various actions on this tree structure
(indexing, element selection, schema mapping, etc.),

• Before transmitting records to the client, they are first converted from the internal structure to a form
suitable for exchange over the network - according to the Z39.50 standard.

Local Representation
As mentioned earlier, Zebra places few restrictions on the type of data that you can index and manage.
Generally, whatever the form of the data, it is parsed by an input filter specific to that format, and turned
into an internal structure that Zebra knows how to handle. This process takes place whenever the record
is accessed - for indexing and retrieval.

The RecordType parameter in thezebra.cfg file, or the-t option to the indexer tells Zebra how to
process input records. Two basic types of processing are available - raw text and structured data. Raw
text is just that, and it is selected by providing the argumenttext to Zebra. Structured records are all
handled internally using the basic mechanisms described in the subsequent sections. Zebra can read
structured records in many different formats. How this is done is governed by additional parameters after
the "grs" keyword, separated by "." characters.

Four basic subtypes to thegrs type are currently available:

grs.sgml

This is the canonical input format — described below. It is a simple SGML-like syntax.
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grs.regx.filter

This enables a user-supplied input filter. The mechanisms of these filters are described below.

grs.tcl.filter

Similar to grs.regx but using Tcl for rules.

grs.marc.abstract syntax

This allows Zebra to read records in the ISO2709 (MARC) encoding standard. In this case, the last
parameterabstract syntaxnames the.abs file (see below) which describes the specific MARC
structure of the input record as well as the indexing rules.

grs.xml

This filter reads XML records. Only one record per file is supported. The filter is only available if
Zebra/YAZ is compiled with EXPAT support.

Canonical Input Format

Although input data can take any form, it is sometimes useful to describe the record processing
capabilities of the system in terms of a single, canonical input format that gives access to the full
spectrum of structure and flexibility in the system. In Zebra, this canonical format is an "SGML-like"
syntax.

To use the canonical format specifygrs.sgml as the record type.

Consider a record describing an information resource (such a record is sometimes known as alocator
record). It might contain a field describing the distributor of the information resource, which might in
turn be partitioned into various fields providing details about the distributor, like this:

<Distributor>
<Name> USGS/WRD </Name>
<Organization> USGS/WRD </Organization>
<Street-Address>

U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
</Street-Address>
<City> ALBUQUERQUE </City>
<State> NM </State>
<Zip-Code> 87102 </Zip-Code>
<Country> USA </Country>
<Telephone> (505) 766-5560 </Telephone>

</Distributor>

The keywords surrounded by <...> aretags, while the sections of text in between are thedata elements.
A data element is characterized by its location in the tree that is made up by the nested elements. Each
element is terminated by a closing tag - beginning with</, and containing the same symbolic tag-name
as the corresponding opening tag. The general closing tag -</> - terminates the element started by the
last opening tag. The structuring of elements is significant. The elementTelephone, for instance, may be
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indexed and presented to the client differently, depending on whether it appears inside theDistributor
element, or some other, structured data element such aSupplierelement.

Record Root

The first tag in a record describes the root node of the tree that makes up the total record. In the canonical
input format, the root tag should contain the name of the schema that lends context to the elements of the
record (seethe Section calledInternal Representation). The following is a GILS record that contains only
a single element (strictly speaking, that makes it an illegal GILS record, since the GILS profile includes
several mandatory elements - Zebra does not validate the contents of a record against the Z39.50 profile,
however - it merely attempts to match up elements of a local representation with the given schema):

<gils>
<title>Zen and the Art of Motorcycle Maintenance</title>

</gils>

Variants

Zebra allows you to provide individual data elements in a number ofvariant forms. Examples of variant
forms are textual data elements which might appear in different languages, and images which may
appear in different formats or layouts. The variant system in Zebra is essentially a representation of the
variant mechanism of Z39.50-1995.

The following is an example of a title element which occurs in two different languages.

<title>
<var lang lang "eng">
Zen and the Art of Motorcycle Maintenance</>
<var lang lang "dan">
Zen og Kunsten at Vedligeholde en Motorcykel</>
</title>

The syntax of thevariant elementis <var class type value> . The available values for theclassand
typefields are given by the variant set that is associated with the current schema (seethe Section called
The Variant Set (.var) Files).

Variant elements are terminated by the general end-tag </>, by the variant end-tag </var>, by the
appearance of another variant tag with the sameclassandvaluesettings, or by the appearance of another,
normal tag. In other words, the end-tags for the variants used in the example above could have been
omitted.

Variant elements can be nested. The element

<title>
<var lang lang "eng"><var body iana "text/plain">
Zen and the Art of Motorcycle Maintenance
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</title>

Associates two variant components to the variant list for the title element.

Given the nesting rules described above, we could write

<title>
<var body iana "text/plain>
<var lang lang "eng">
Zen and the Art of Motorcycle Maintenance
<var lang lang "dan">
Zen og Kunsten at Vedligeholde en Motorcykel
</title>

The title element above comes in two variants. Both have the IANA body type "text/plain", but one is in
English, and the other in Danish. The client, using the element selection mechanism of Z39.50, can
retrieve information about the available variant forms of data elements, or it can select specific variants
based on the requirements of the end-user.

Input Filters

In order to handle general input formats, Zebra allows the operator to define filters which read individual
records in their native format and produce an internal representation that the system can work with.

Input filters are ASCII files, generally with the suffix.flt . The system looks for the files in the
directories given in theprofilePathsetting in thezebra.cfg files. The record type for the filter is
grs.regx. filter-filename(fundamental typegrs , file read typeregx , argumentfilter-filename).

Generally, an input filter consists of a sequence of rules, where each rule consists of a sequence of
expressions, followed by an action. The expressions are evaluated against the contents of the input
record, and the actions normally contribute to the generation of an internal representation of the record.

An expression can be either of the following:

INIT

The action associated with this expression is evaluated exactly once in the lifetime of the
application, before any records are read. It can be used in conjunction with an action that initializes
tables or other resources that are used in the processing of input records.

BEGIN

Matches the beginning of the record. It can be used to initialize variables, etc. Typically, theBEGIN
rule is also used to establish the root node of the record.
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END

Matches the end of the record - when all of the contents of the record has been processed.

/pattern/

Matches a string of characters from the input record.

BODY

This keyword may only be used between two patterns. It matches everything between (not
including) those patterns.

FINISH

The expression associated with this pattern is evaluated once, before the application terminates. It
can be used to release system resources - typically ones allocated in theINIT step.

An action is surrounded by curly braces ({...}), and consists of a sequence of statements. Statements may
be separated by newlines or semicolons (;). Within actions, the strings that matched the expressions
immediately preceding the action can be referred to as $0, $1, $2, etc.

The available statements are:

begintype [parameter ... ]

Begin a new data element. Thetype is one of the following:

record

Begin a new record. The following parameter should be the name of the schema that describes
the structure of the record, eg.gils or wais (see below). Thebegin record call should
precede any other use of thebegin statement.

element

Begin a new tagged element. The parameter is the name of the tag. If the tag is not matched
anywhere in the tagsets referenced by the current schema, it is treated as a local string tag.

variant

Begin a new node in a variant tree. The parameters areclass type value .

dataparameter

Create a data element. The concatenated arguments make up the value of the data element. The
option-text signals that the layout (whitespace) of the data should be retained for transmission.
The option-element tag wraps the data up in thetag . The use of the-element option is
equivalent to preceding the command with abegin element command, and following it with
theend command.
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end[type]

Close a tagged element. If no parameter is given, the last element on the stack is terminated. The
first parameter, if any, is a type name, similar to thebegin statement. For theelement type, a tag
name can be provided to terminate a specific tag.

unreadno

Move the input pointer to the offset of first character that match rule given byno . The first rule
from left-to-right is numbered zero, the second rule is named 1 and so on.

The following input filter reads a Usenet news file, producing a record in the WAIS schema. Note that the
body of a news posting is separated from the list of headers by a blank line (or rather a sequence of two
newline characters.

BEGIN { begin record wais }

/^From:/ BODY /$/ { data -element name $1 }
/^Subject:/ BODY /$/ { data -element title $1 }
/^Date:/ BODY /$/ { data -element lastModified $1 }
/\n\n/ BODY END {

begin element bodyOfDisplay
begin variant body iana "text/plain"
data -text $1
end record

}

If Zebra is compiled with support for Tcl enabled, the statements described above are supplemented with
a complete scripting environment, including control structures (conditional expressions and loop
constructs), and powerful string manipulation mechanisms for modifying the elements of a record.

Internal Representation
When records are manipulated by the system, they’re represented in a tree-structure, with data elements
at the leaf nodes, and tags or variant components at the non-leaf nodes. The root-node identifies the
schema that lends context to the tagging and structuring of the record. Imagine a simple record,
consisting of a ’title’ element and an ’author’ element:

ROOT
TITLE "Zen and the Art of Motorcycle Maintenance"
AUTHOR "Robert Pirsig"

A slightly more complex record would have the author element consist of two elements, a surname and a
first name:
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ROOT
TITLE "Zen and the Art of Motorcycle Maintenance"
AUTHOR

FIRST-NAME "Robert"
SURNAME "Pirsig"

The root of the record will refer to the record schema that describes the structuring of this particular
record. The schema defines the element tags (TITLE, FIRST-NAME, etc.) that may occur in the record,
as well as the structuring (SURNAME should appear below AUTHOR, etc.). In addition, the schema
establishes element set names that are used by the client to request a subset of the elements of a given
record. The schema may also establish rules for converting the record to a different schema, by stating,
for each element, a mapping to a different tag path.

Tagged Elements

A data element is characterized by its tag, and its position in the structure of the record. For instance,
while the tag "telephone number" may be used different places in a record, we may need to distinguish
between these occurrences, both for searching and presentation purposes. For instance, while the phone
numbers for the "customer" and the "service provider" are both representatives for the same type of
resource (a telephone number), it is essential that they be kept separate. The record schema provides the
structure of the record, and names each data element (defined by the sequence of tags - the tag path - by
which the element can be reached from the root of the record).

Variants

The children of a tag node may be either more tag nodes, a data node (possibly accompanied by tag
nodes), or a tree of variant nodes. The children of variant nodes are either more variant nodes or a data
node (possibly accompanied by more variant nodes). Each leaf node, which is normally a data node,
corresponds to avariant formof the tagged element identified by the tag which parents the variant tree.
The following title element occurs in two different languages:

VARIANT LANG=ENG "War and Peace"
TITLE
VARIANT LANG=DAN "Krig og Fred"

Which of the two elements are transmitted to the client by the server depends on the specifications
provided by the client, if any.

In practice, each variant node is associated with a triple of class, type, value, corresponding to the variant
mechanism of Z39.50.
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Data Elements

Data nodes have no children (they are always leaf nodes in the record tree).

Configuring Your Data Model
The following sections describe the configuration files that govern the internal management of data
records. The system searches for the files in the directories specified by theprofilePathsetting in the
zebra.cfg file.

The Abstract Syntax

The abstract syntax definition (also known as an Abstract Record Structure, or ARS) is the focal point of
the record schema description. For a given schema, the ABS file may state any or all of the following:

• The object identifier of the Z39.50 schema associated with the ARS, so that it can be referred to by
the client.

• The attribute set (which can possibly be a compound of multiple sets) which applies in the profile.
This is used when indexing and searching the records belonging to the given profile.

• The tag set (again, this can consist of several different sets). This is used when reading the records
from a file, to recognize the different tags, and when transmitting the record to the client - mapping the
tags to their numerical representation, if they are known.

• The variant set which is used in the profile. This provides a vocabulary for specifying theformsof
data that appear inside the records.

• Element set names, which are a shorthand way for the client to ask for a subset of the data elements
contained in a record. Element set names, in the retrieval module, are mapped toelement
specifications, which contain information equivalent to theEspec-1syntax of Z39.50.

• Map tables, which may specify mappings tootherdatabase profiles, if desired.

• Possibly, a set of rules describing the mapping of elements to a MARC representation.

• A list of element descriptions (this is the actual ARS of the schema, in Z39.50 terms), which lists the
ways in which the various tags can be used and organized hierarchically.

Several of the entries above simply refer to other files, which describe the given objects.

The Configuration Files

This section describes the syntax and use of the various tables which are used by the retrieval module.

The number of different file types may appear daunting at first, but each type corresponds fairly clearly
to a single aspect of the Z39.50 retrieval facilities. Further, the average database administrator, who is
simply reusing an existing profile for which tables already exist, shouldn’t have to worry too much about
the contents of these tables.
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Generally, the files are simple ASCII files, which can be maintained using any text editor. Blank lines,
and lines beginning with a (#) are ignored. Any characters on a line followed by a (#) are also ignored.
All other lines containdirectives, which provide some setting or value to the system. Generally, settings
are characterized by a single keyword, identifying the setting, followed by a number of parameters. Some
settings are repeatable (r), while others may occur only once in a file. Some settings are optional (o),
while others again are mandatory (m).

The Abstract Syntax (.abs) Files

The name of this file type is slightly misleading in Z39.50 terms, since, apart from the actual abstract
syntax of the profile, it also includes most of the other definitions that go into a database profile.

When a record in the canonical, SGML-like format is read from a file or from the database, the first tag
of the file should reference the profile that governs the layout of the record. If the first tag of the record is,
say,<gils> , the system will look for the profile definition in the filegils.abs . Profile definitions are
cached, so they only have to be read once during the lifespan of the current process.

When writing your own input filters, therecord-begincommand introduces the profile, and should
always be called first thing when introducing a new record.

The file may contain the following directives:

namesymbolic-name

(m) This provides a shorthand name or description for the profile. Mostly useful for diagnostic
purposes.

referenceOID-name

(m) The reference name of the OID for the profile. The reference names can be found in theutil
module of YAZ.

attsetfilename

(m) The attribute set that is used for indexing and searching records belonging to this profile.

tagsetfilename

(o) The tag set (if any) that describe that fields of the records.

varsetfilename

(o) The variant set used in the profile.

maptabfilename

(o,r) This points to a conversion table that might be used if the client asks for the record in a
different schema from the native one.

marcfilename

(o) Points to a file containing parameters for representing the record contents in the ISO2709
syntax. Read the description of the MARC representation facility below.
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esetnamename filename

(o,r) Associates the given element set name with an element selection file. If an (@) is given in
place of the filename, this corresponds to a null mapping for the given element set name.

anytags

(o) This directive specifies a list of attributes which should be appended to the attribute list given
for each element. The effect is to make every single element in the abstract syntax searchable by
way of the given attributes. This directive provides an efficient way of supporting free-text
searching across all elements. However, it does increase the size of the index significantly. The
attributes can be qualified with a structure, as in theelm directive below.

elmpath name attributes

(o,r) Adds an element to the abstract record syntax of the schema. Thepath follows the syntax
which is suggested by the Z39.50 document - that is, a sequence of tags separated by slashes (/).
Each tag is given as a comma-separated pair of tag type and -value surrounded by parenthesis. The
name is the name of the element, and theattributes specifies which attributes to use when
indexing the element in a comma-separated list. A ! in place of the attribute name is equivalent to
specifying an attribute name identical to the element name. A - in place of the attribute name
specifies that no indexing is to take place for the given element. The attributes can be qualified with
field types to specify which character set should govern the indexing procedure for that field.
The same data element may be indexed into several different fields, using different character set
definitions. See thethe Section calledField Structure and Character Sets. The default field type isw
for word.

xelmxpath attributes

Specifies indexing for record nodes given byxpath . Unlike directive elm, this directive allows
you to index attribute contents. Thexpath uses a syntax similar to XPath. Theattributes
have same syntax and meaning as directive elm, except that operator ! refers to the nodes selected
by xpath .

encodingencodingname

This directive specifies character encoding for external records. For records such as XML that
specifies encoding within the file via a header this directive is ignored. If neither this directive is
given, nor an encoding is set within external records, ISO-8859-1 encoding is assumed.

xpathenable /disable

If this directive is followed byenable , then extra indexing is performed to allow for XPath-like
queries. If this directive is not specified - equivalent todisable - no extra XPath-indexing is
performed.

systagsystemTag actualTag

Specifies what information, if any, Zebra should automatically include in retrieval records for the
“system fields” that it supports.systemTag may be any of the following:

rank

An integer indicating the relevance-ranking score assigned to the record.
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sysno

An automatically generated identifier for the record, unique within this database. It is
represented by the<localControlNumber> element in XML and the(1,14) tag in GRS-1.

size

The size, in bytes, of the retrieved record.

TheactualTag parameter may benone to indicate that the named element should be omitted
from retrieval records.

Note: The mechanism for controlling indexing is not adequate for complex databases, and will
probably be moved into a separate configuration table eventually.

The following is an excerpt from the abstract syntax file for the GILS profile.

name gils
reference GILS-schema
attset gils.att
tagset gils.tag
varset var1.var

maptab gils-usmarc.map

# Element set names

esetname VARIANT gils-variant.est # for WAIS-compliance
esetname B gils-b.est
esetname G gils-g.est
esetname F @

elm (1,10) rank -
elm (1,12) url -
elm (1,14) localControlNumber Local-number
elm (1,16) dateOfLastModification Date/time-last-modified
elm (2,1) title w:!,p:!
elm (4,1) controlIdentifier Identifier-standard
elm (2,6) abstract Abstract
elm (4,51) purpose !
elm (4,52) originator -
elm (4,53) accessConstraints !
elm (4,54) useConstraints !
elm (4,70) availability -
elm (4,70)/(4,90) distributor -
elm (4,70)/(4,90)/(2,7) distributorName !
elm (4,70)/(4,90)/(2,10 distributorOrganization !
elm (4,70)/(4,90)/(4,2) distributorStreetAddress !
elm (4,70)/(4,90)/(4,3) distributorCity !
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The Attribute Set (.att) Files

This file type describes theUse elements of an attribute set. It contains the following directives.

namesymbolic-name

(m) This provides a shorthand name or description for the attribute set. Mostly useful for diagnostic
purposes.

referenceOID-name

(m) The reference name of the OID for the attribute set. The reference names can be found in the
util module ofYAZ.

includefilename

(o,r) This directive is used to include another attribute set as a part of the current one. This is used
when a new attribute set is defined as an extension to another set. For instance, many new attribute
sets are defined as extensions to thebib-1 set. This is an important feature of the retrieval system
of Z39.50, as it ensures the highest possible level of interoperability, as those access points of your
database which are derived from the external set (say, bib-1) can be used even by clients who are
unaware of the new set.

attatt-value att-name [local-value]

(o,r) This repeatable directive introduces a new attribute to the set. The attribute value is stored in
the index (unless alocal-value is given, in which case this is stored). The name is used to refer
to the attribute from theabstract syntax .

This is an excerpt from the GILS attribute set definition. Notice how the file describing thebib-1attribute
set is referenced.

name gils
reference GILS-attset
include bib1.att

att 2001 distributorName
att 2002 indextermsControlled
att 2003 purpose
att 2004 accessConstraints
att 2005 useConstraints
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The Tag Set (.tag) Files

This file type defines the tagset of the profile, possibly by referencing other tag sets (most tag sets, for
instance, will include tagsetG and tagsetM from the Z39.50 specification. The file may contain the
following directives.

namesymbolic-name

(m) This provides a shorthand name or description for the tag set. Mostly useful for diagnostic
purposes.

referenceOID-name

(o) The reference name of the OID for the tag set. The reference names can be found in theutil
module ofYAZ. The directive is optional, since not all tag sets are registered outside of their schema.

type integer

(m) The type number of the tagset within the schema profile (note: this specification really should
belong to the .abs file. This will be fixed in a future release).

includefilename

(o,r) This directive is used to include the definitions of other tag sets into the current one.

tagnumber names type

(o,r) Introduces a new tag to the set. Thenumberis the tag number as used in the protocol (there is
currently no mechanism for specifying string tags at this point, but this would be quick work to
add). Thenamesparameter is a list of names by which the tag should be recognized in the input file
format. The names should be separated by slashes (/). Thetypeis the recommended data type of the
tag. It should be one of the following:

• structured

• string

• numeric

• bool

• oid

• generalizedtime

• intunit

• int

• octetstring

• null

The following is an excerpt from the TagsetG definition file.

name tagsetg
reference TagsetG
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type 2

tag 1 title string
tag 2 author string
tag 3 publicationPlace string
tag 4 publicationDate string
tag 5 documentId string
tag 6 abstract string
tag 7 name string
tag 8 date generalizedtime
tag 9 bodyOfDisplay string
tag 10 organization string

The Variant Set (.var) Files

The variant set file is a straightforward representation of the variant set definitions associated with the
protocol. At present, only theVariant-1set is known.

These are the directives allowed in the file.

namesymbolic-name

(m) This provides a shorthand name or description for the variant set. Mostly useful for diagnostic
purposes.

referenceOID-name

(o) The reference name of the OID for the variant set, if one is required. The reference names can
be found in theutil module ofYAZ.

classinteger class-name

(m,r) Introduces a new class to the variant set.

type integer type-name datatype

(m,r) Addes a new type to the current class (the one introduced by the most recentclassdirective).
The type names belong to the same name space as the one used in the tag set definition file.

The following is an excerpt from the file describing the variant setVariant-1.

name variant-1
reference Variant-1

class 1 variantId

type 1 variantId octetstring

class 2 body
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type 1 iana string
type 2 z39.50 string
type 3 other string

The Element Set (.est) Files

The element set specification files describe a selection of a subset of the elements of a database record.
The element selection mechanism is equivalent to the one supplied by theEspec-1syntax of the Z39.50
specification. In fact, the internal representation of an element set specification is identical to theEspec-1
structure, and we’ll refer you to the description of that structure for most of the detailed semantics of the
directives below.

Note: Not all of the Espec-1 functionality has been implemented yet. The fields that are mentioned
below all work as expected, unless otherwise is noted.

The directives available in the element set file are as follows:

defaultVariantSetIdOID-name

(o) If variants are used in the following, this should provide the name of the variantset used (it’s not
currently possible to specify a different set in the individual variant request). In almost all cases
(certainly all profiles known to us), the nameVariant-1 should be given here.

defaultVariantRequestvariant-request

(o) This directive provides a default variant request for use when the individual element requests
(see below) do not contain a variant request. Variant requests consist of a blank-separated list of
variant components. A variant compont is a comma-separated, parenthesized triple of variant class,
type, and value (the two former values being represented as integers). The value can currently only
be entered as a string (this will change to depend on the definition of the variant in question). The
special value (@) is interpreted as a null value, however.

simpleElementpath [’variant’ variant-request]

(o,r) This corresponds to a simple element request inEspec-1. The path consists of a sequence of
tag-selectors, where each of these can consist of either:

• A simple tag, consisting of a comma-separated type-value pair in parenthesis, possibly followed
by a colon (:) followed by an occurrences-specification (see below). The tag-value can be a
number or a string. If the first character is an apostrophe (’), this forces the value to be interpreted
as a string, even if it appears to be numerical.

• A WildThing, represented as a question mark (?), possibly followed by a colon (:) followed by
an occurrences specification (see below).
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• A WildPath, represented as an asterisk (*). Note that the last element of the path should not be a
wildPath (wildpaths don’t work in this version).

The occurrences-specification can be either the stringall , the stringlast , or an explicit
value-range. The value-range is represented as an integer (the starting point), possibly followed by a
plus (+) and a second integer (the number of elements, default being one).

The variant-request has the same syntax as the defaultVariantRequest above. Note that it may
sometimes be useful to give an empty variant request, simply to disable the default for a specific set
of fields (we aren’t certain if this is properEspec-1, but it works in this implementation).

The following is an example of an element specification belonging to the GILS profile.

simpleelement (1,10)
simpleelement (1,12)
simpleelement (2,1)
simpleelement (1,14)
simpleelement (4,1)
simpleelement (4,52)

The Schema Mapping (.map) Files

Sometimes, the client might want to receive a database record in a schema that differs from the native
schema of the record. For instance, a client might only know how to process WAIS records, while the
database record is represented in a more specific schema, such as GILS. In this module, a mapping of
data to one of the MARC formats is also thought of as a schema mapping (mapping the elements of the
record into fields consistent with the given MARC specification, prior to actually converting the data to
the ISO2709). This use of the object identifier for USMARC as a schema identifier represents an
overloading of the OID which might not be entirely proper. However, it represents the dual role of
schema and record syntax which is assumed by the MARC family in Z39.50.

These are the directives of the schema mapping file format:

targetNamename

(m) A symbolic name for the target schema of the table. Useful mostly for diagnostic purposes.

targetRefOID-name

(m) An OID name for the target schema. This is used, for instance, by a server receiving a request
to present a record in a different schema from the native one. The name, again, is found in theoid
module ofYAZ.
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mapelement-name target-path

(o,r) Adds an element mapping rule to the table.

The MARC (ISO2709) Representation (.mar) Files

This file provides rules for representing a record in the ISO2709 format. The rules pertain mostly to the
values of the constant-length header of the record.

Field Structure and Character Sets

In order to provide a flexible approach to national character set handling, Zebra allows the administrator
to configure the set up the system to handle any 8-bit character set — including sets that require
multi-octet diacritics or other multi-octet characters. The definition of a character set includes a
specification of the permissible values, their sort order (this affects the display in the SCAN function),
and relationships between upper- and lowercase characters. Finally, the definition includes the
specification of space characters for the set.

The operator can define different character sets for different fields, typical examples being standard text
fields, numerical fields, and special-purpose fields such as WWW-style linkages (URx).

The field types, and hence character sets, are associated with data elements by the .abs files (see above).
The filedefault.idx provides the association between field type codes (as used in the .abs files) and
the character map files (with the .chr suffix). The format of the .idx file is as follows

indexfield type code

This directive introduces a new search index code. The argument is a one-character code to be used
in the .abs files to select this particular index type. An index, roughly, corresponds to a particular
structure attribute during search. Refer tothe Section calledSearchin Chapter 7.

sortfield code type

This directive introduces a sort index. The argument is a one-character code to be used in the .abs
fie to select this particular index type. The corresponding use attribute must be used in the sort
request to refer to this particular sort index. The corresponding character map (see below) is used in
the sort process.

completenessboolean

This directive enables or disables complete field indexing. The value of thebooleanshould be 0
(disable) or 1. If completeness is enabled, the index entry will contain the complete contents of the
field (up to a limit), with words (non-space characters) separated by single space characters
(normalized to " " on display). When completeness is disabled, each word is indexed as a separate
entry. Complete subfield indexing is most useful for fields which are typically browsed (eg. titles,
authors, or subjects), or instances where a match on a complete subfield is essential (eg. exact title
searching). For fields where completeness is disabled, the search engine will interpret a search
containing space characters as a word proximity search.
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charmapfilename

This is the filename of the character map to be used for this index for field type.

The contents of the character map files are structured as follows:

lowercasevalue-set

This directive introduces the basic value set of the field type. The format is an ordered list (without
spaces) of the characters which may occur in "words" of the given type. The order of the entries in
the list determines the sort order of the index. In addition to single characters, the following
combinations are legal:

• Backslashes may be used to introduce three-digit octal, or two-digit hex representations of single
characters (preceded byx). In addition, the combinations \\, \\r, \\n, \\t, \\s (space — remember
that real space-characters may not occur in the value definition), and \\ are recognized, with their
usual interpretation.

• Curly braces {} may be used to enclose ranges of single characters (possibly using the escape
convention described in the preceding point), eg. {a-z} to introduce the standard range of ASCII
characters. Note that the interpretation of such a range depends on the concrete representation in
your local, physical character set.

• paranthesises () may be used to enclose multi-byte characters - eg. diacritics or special national
combinations (eg. Spanish "ll"). When found in the input stream (or a search term), these
characters are viewed and sorted as a single character, with a sorting value depending on the
position of the group in the value statement.

uppercasevalue-set

This directive introduces the upper-case equivalencis to the value set (if any). The number and
order of the entries in the list should be the same as in thelowercase directive.

spacevalue-set

This directive introduces the character which separate words in the input stream. Depending on the
completeness mode of the field in question, these characters either terminate an index entry, or
delimit individual "words" in the input stream. The order of the elements is not significant —
otherwise the representation is the same as for theuppercase andlowercase directives.

mapvalue-set target

This directive introduces a mapping between each of the members of the value-set on the left to the
character on the right. The character on the right must occur in the value set (thelowercase

directive) of the character set, but it may be a paranthesis-enclosed multi-octet character. This
directive may be used to map diacritics to their base characters, or to map HTML-style
character-representations to their natural form, etc.
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Exchange Formats
Converting records from the internal structure to en exchange format is largely an automatic process.
Currently, the following exchange formats are supported:

• GRS-1. The internal representation is based on GRS-1/XML, so the conversion here is
straightforward. The system will create applied variant and supported variant lists as required, if a
record contains variant information.

• XML. The internal representation is based on GRS-1/XML so the mapping is trivial. Note that XML
schemas, preprocessing instructions and comments are not part of the internal representation and
therefore will never be part of a generated XML record. Future versions of the Zebra will support that.

• SUTRS. Again, the mapping is fairly straightforward. Indentation is used to show the hierarchical
structure of the record. All "GRS" type records support both the GRS-1 and SUTRS representations.

• ISO2709-based formats (USMARC, etc.). Only records with a two-level structure (corresponding to
fields and subfields) can be directly mapped to ISO2709. For records with a different structuring (eg.,
GILS), the representation in a structure like USMARC involves a schema-mapping (seethe Section
calledThe Schema Mapping (.map) Files), to an "implied" USMARC schema (implied, because there
is no formal schema which specifies the use of the USMARC fields outside of ISO2709). The
resultant, two-level record is then mapped directly from the internal representation to ISO2709. See
the GILS schema definition files for a detailed example of this approach.

• Explain. This representation is only available for records belonging to the Explain schema.

• Summary. This ASN-1 based structure is only available for records belonging to the Summary
schema - or schema which provide a mapping to this schema (see the description of the schema
mapping facility above).

• SOIF. Support for this syntax is experimental, and is currently keyed to a private Index Data OID
(1.2.840.10003.5.1000.81.2). All abstract syntaxes can be mapped to the SOIF format, although nested
elements are represented by concatenation of the tag names at each level.
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Appendix A. License
Zebra Server, Copyright © 1995-2003 Index Data ApS.

Zebra is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version.

Zebra is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Zebra; see the file
LICENSE.zebra. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
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gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
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You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
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1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
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restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
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Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Appendix B. About Index Data and the Zebra
Server

Index Data is a consulting and software-development enterprise that specializes in library and
information management systems. Our interests and expertise span a broad range of related fields, and
one of our primary, long-term objectives is the development of a powerful information management
system with open network interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the
networking community, and to further the development of quality software for open network
communication.

We’ll be happy to answer questions about the software, and about ourselves in general.

Index Data Aps
Købmagergade 43
1150 Copenhagen K
Denmark
Phone +45 3341 0100
Fax +45 3341 0101
Email <info@indexdata.dk >

indexdata.dk (http://indexdata.dk/)

TheRandom House College Dictionary, 1975 edition offers this definition of the word "Zebra":

[ Zebra, n., any of several horselike, African mammals of the genus Equus, having a characteristic
pattern of black or dark-brown stripes on a whitish background. ]
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