Zebra Server - Administrators’ Guide
and Reference

Sebastian Hammer
Adam Dickmeiss

Heikki Levanto

Zebra Server - Administrators’ Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss
by Heikki Levanto

Copyright © 1995-2002 by Index Data

The Zebra information server combines a versatile fielded/free-text search engine with a 2Z39.50 v3 front-end to
provide a powerful and flexible information management system. This document explains the procedure for
installing and configuring the system, managing data and providing Z39.50 services with the software.

This manual covers version 1.3.1 of Zebra.

Table of Contents

R L1 oo [1od 1o o OSSOSO 1
OVEBIVIBW. ..ttt ettt sttt ettt e bt ek se ke se b e ne s b et b e Rt e b e st st e bt se ekt se ek e st e b et et e e et enesbenenaebeneas 1
FRALUIES ...ttt ettt bttt e bt e s bt e s ae e s ate e b e e sa e e eae e e b e e Rt e eae e eabe e nRe e nhe e nnreene e re e nnee 1
LT U0 T S 2

B2 1153 = 1= 1T o S 3

G T 1103 0] = L AR 4

VAo [T T IS (= Vil o 7= o] - LR 6
RECOIT TYPES...c ettt ettt b et b e e b st bbb st b bt ne b e ettt nrene 6
The Zebra Configuration FilB...........coo s 6
(o Tor=1 1] To N = Tol 0] £ [PPSR 8
Indexing with no Record IDs (Simple INAEXiNg)........cccceererinereneieese e 9
Indexing With File RECOI IDS........cooi it e st ene 9
Indexing with General RECOI IDIS.... ..o s s 10
REQISIEN LOCALION......couiiieiieieeee ettt st b bbb e e et e st ebesbeseeseeeenea 12
Safe Updating - Using ShadOow REQISLEIS.........cooiriieiiirerie et 12

1S o3] T o S 12
How to Use Shadow RegiSter Files.........coco e 13

5. Running the Maintenance Interface (Zebraidx)..........cocoeoeiriiininencie e 15

B. THE Z39.50 SEIVEL......ci ittt sttt sttt sttt st st st be et st ek et ekt s be st st be e e be et 17
Running the Z39.50 SErver (ZEDIaSIV).......c.coii i see et saenaenens 17
Z39.50 Protocol Support and BENAVIQL...........ccceveieeeiie e 18

T TLE= 1 2= 4o TSSOSO 19
LY== T o PSR 19

REGUIAT EXPIESSIONS.c.eieiiieierieie ettt sttt s et 19

QUETY EXAMPIES. ..ottt et sttt 20
e (=ES=] 0] A PP P PRSPPI 21
o> o PSP 21
1T] PSSP 21
L0 o]SSPSR 22

7. The RECOII MOUEL......oeeieiiee ettt st et e nesbesee e e e e 23

LOCAI REPIESENTALION.cuieeviietiisieere ettt sttt b e e e b e b 23
Canonical INPUE FOMMAL.........coi ettt s b e b e s see e eneas 24

[T oTo] (o [l oo) AT 25

WATTANTS. ...ttt ettt e be s b e b e e s e e st e b e s besee s b et et et e aeebesbeseeseeneeneas 25

T 01U L 1 1= =T USSP 26
INternal REPIrESENTALIAN........ccuiiiiieete ettt st s b et sbe e eenea 28
TAGQEA EIBMENLS.... .ttt ettt bbb et b e sb e se e e 29
WAITANTS ...ttt ettt h e b b e bt e e e e st e he e aeehe e b e bene et eaeebesbesheee e e e e ens 29
Data EIEMENLS.....co.oiiieeeee e bbb e 29
Configuring YOUr Data MOUEL.........ccooieie et sttt 30
I AN S = Lo)Y = 30

The Configuration FlES........cooi et 30

The Abstract Syntax (.abs) FIleS.......ccoi e 31

The Attribute Set (Latt) FIlES.....cccoce e 33

The Tag Set ((tag) FIleS ... 34

The Variant Set (.Var) FIlES........cc e 35

The Element Set (.eSt) FIlES......c.oo e 36

The Schema Mapping (.Map) FIlES........ciriiriereee s 37

The MARC (ISO2709) Representation (.mar) FileS........ccceviiininniinineenecneees 38

Field Structure and Character SELS.........ocoiieirrinrirere e 38

EXCNANQE FOMMALS.......oouiiiiieee ettt st a e s b e e e e e aesbesbeseeseeneneas 40

F N I (o= LTSS 42
GNU General PUBIIC LICENSE.......cciiieirieitieee ettt 42

B. About Index Data and the Zebhra SEIVET ... 49

Chapter 1. Introduction

Overview

The Zebra (http://www.indexdata.dk/zebra/) server is a high-performance, general-purpose structured
text indexing and retrieval engine. It reads structured records in a variety of input formats (eg. email,
XML, MARC) and allows access to them through exact boolean search expressions and
relevance-ranked free-text queries.

Zebra supports large databases (more than ten gigabytes of data, tens of millions of records). It supports
incremental, safe database updates on live systems. You can access data stored in Zebra using a variety
of Index Data tools (eg. YAZ and PHP/YAZ) as well as commercial and freeware Z239.50 clients and
toolkits.

This document is an introduction to the Zebra system. It will tell you how to compile the software, and
how to prepare your first database. It also explains how the server can be configured to give you the
functionality that you need.

If you find the software interesting, you should visit the Zebra web site
(http://Iwww.indexdata.dk/zebra/), where you can join the mailing-list
(http://Iwww.indexdata.dk/mailman/listinfo/zebralist) by sending email to

Features

This is an overview of some of the most important features of the system.

« Supports large databases - files for indices, etc. can be automatically partitioned over multiple disks.

« Supports arbitrarily complex records - base input format is an SGML-like syntax which allows nested
(structured) data elements, as well as variant forms of data.

« Robust updating - records can be added and deleted without rebuilding the index from scratch. The
update procedure is tolerant to crashes or hard interrupts during register updating - registers can be
reconstructed following a crash. Registers can be safely updated even while users are accessing the
server.

« Supports random storage formats. A system of input filters driven by regular expressions allows you
to easily process most ASClI-based data formats. SGML, XML, 1ISO2709 (MARC), and raw text are
also supported.

« Supports boolean queries as well as relevance-ranking (free-text) searching. Right truncation and
masking in terms are supported, as well as full regular expressions.

- Can import the data into Zebras own storage, or just refer to external files (good for building indexes
of "live" collections).

- Supports multiple concrete syntaxes for record exchange (depending on the configuration): GRS-1,
SUTRS, XML, 1ISO2709 (*MARC). Records can be mapped between record syntaxes and schema on
the fly.

« Supports approximate matching in registers (ie. spelling mistakes, etc).

Chapter 1. Introduction

« Zebrais written in portable C, so it runs on most Unix-like systems as well as Windows NT - a binary
distribution for Windows NT is available.

Z39.50 protocol support:

- Protocol facilities: Init, Search, Retrieve, Delete, Browse and Sort.
« Piggy-backed presents are honored in the search-request.
- Named result sets are supported.

- Easily configured to support different application profiles, with tables for attribute sets, tag sets, and
abstract syntaxes. Additional tables control facilities such as element mappings to different schema
(eg., GILS-to-USMARC).

- Complex composition specifications using Espec-1 are partially supported (simple element requests
only).

- Element Set Names are defined using the Espec-1 capability of the system, and are given in
configuration files as simple element requests (and possibly variant requests).

Future Work

These are some of the plans that we have for the software in the near and far future, approximately
ordered after their relative importance.

« Improved support for XML in search and retrieval. Eventually, the goal is for Zebra to pull double
duty as a flexible information retrieval engine and high-performance XML repository.

« Access to search engine through SOAP/RPC API to allow the construction of applications without
requiring Z39.50 tools.

- Finalisation, documentation of the Zebra API. Consider exposing the API through SOAP as well
(allowing updates, database management).

- Improved free-text searching. We're first and foremost octet jockeys and we're actively looking for
organisations or people who'd like to contribute experience in relevance ranking and text searching.

Programmers thrive on user feedback. If you are interested in a facility that you don’t see mentioned
here, or if there’s something you think we could do better, please drop us a mail. If you think it’s all really
neat, you're welcome to drop us a line saying that, too. You'll find contact info at the end of this file.

Chapter 2. Installation

zebrasrv

zebraidx

An ANSI C compiler is required to compile the Zebra server systemce—works fine if your own
system doesn't provide an adequate compiler.

Unpack the distribution archive. Thenfigure shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to create a 'Makefile’ in each
directory of Zebra.

To run the configure script type:

Jconfigure

The configure script attempts to use C compiler specified bg@&environment variable. If not setg
or GNU C will be used. ThEFLAGSenvironment variable holds options to be passed to the C compiler.
If you're using a Bourne-shell compatible shell you may pass something like this:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

The configure script takes a number of arguments, you can see them all with

Jconfigure --help

When configured build the software by typing:

make

If successful, two executables have been created in the sub-diréctexy.

The Z39.50 server and search engine.

The administrative indexing tool.

You can now use Zebra. If you wish to install it system-wide, type

make install
By default this will install the Zebra executablegisr/local/bin , and the standard configuration
files in/usr/local/share/zebra You can override this with theprefix ~ option to configure.

Chapter 3. Quick Start

FIXME - Start with the new improved example scripts that run without any configuration file changes!

In this section, we will test the system by indexing a small set of sample GILS records that are included
with the software distribution. Go to thest/gils subdirectory of the distribution archive. There you
will find a configuration file namedebra.cfg with the following contents:

Where are the YAZ tables located.
profilePath: ../../..lyaz/tab ../../tab

Files that describe the attribute sets supported.
attset: bib1.att
attset: gils.att

Now, edit the file and sgdrofilePath to the path of the YAZ profile tables (sub directaap of the
YAZ distribution archive).

The 48 test records are located in the sub direateryrds . To index these, type:

$../../index/zebraidx -t grs.sgml update records

In the command above the optian specified the record type — in this cags.sgm! . The word
update followed by a directory root updates all files below that directory node.

If your indexing command was successful, you are now ready to fire up a server. To start a server on port
2100, type:

$../../index/zebrasrv tcp:@:2100

The Zebra index that you have just created has a single database befagtd . The database contains
records structured according to the GILS profile, and the server will return records in either either
USMARC, GRS-1, or SUTRS depending on what your client asks for.

To test the server, you can use any Z39.50 client (1992 or later). For instance, you can use the demo
client that comes with YAZ: Just cd to thtent subdirectory of the YAZ distribution and type:

$.lyaz-client tcp:localhost:2100

When the client has connected, you can type:

Z> find surficial
Z> show 1

Chapter 3. Quick Start

The default retrieval syntax for the client is USMARC. To try other formats for the same record, try:

Z>format sutrs
Z>show 1
Z>format grs-1
Z>show 1
Z>format xml
Z>show 1
Z>elements B
Z>show 1

Note: You may notice that more fields are returned when your client requests SUTRS or GRS-1
records. When retrieving GILS records, this is normal - not all of the GILS data elements have
mappings in the USMARC record format.

If you've made it this far, there’s a good chance that you've got through the compilation OK.

Chapter 4. Administrating Zebra

Insert

Modify

Delete

Unlike many simpler retrieval systems, Zebra supports safe, incremental updates to an existing index.

Normally, when Zebra modifies the index it reads a number of records that you specify. Depending on
your specifications and on the contents of each record one the following events take place for each
record:

The record is indexed as if it never occurred before. Either the Zebra system doesn’t know how to
identify the record or Zebra can identify the record but didn't find it to be already indexed.

The record has already been indexed. In this case either the contents of the record or the location
(file) of the record indicates that it has been indexed before.

The record is deleted from the index. As in the update-case it must be able to identify the record.

Please note that in both the modify- and delete- case the Zebra indexer must be able to generate a unique
key that identifies the record in question (more on this below).

To administrate the Zebra retrieval system, you runztigaidx program. This program supports a
number of options which are preceded by a dash, and a few commands (not preceded by dash).

Both the Zebra administrative tool and the Z39.50 server share a set of index files and a global
configuration file. The name of the configuration file defaultsetera.cfy . The configuration file

includes specifications on how to index various kinds of records and where the other configuration files
are locatedzebrasrv andzebraidx mustbe run in the directory where the configuration file lives
unless you indicate the location of the configuration file by optéon

Record Types

Indexing is a per-record process, in which either insert/modify/delete will occur. Before a record is
indexed search keys are extracted from whatever might be the layout the original record (sgml,html,text,
etc..). The Zebra system currently supports two fundamental types of records: structured and simple text.
To specify a particular extraction process, use either the command line eptmmspecify a

recordType setting in the configuration file.

The Zebra Configuration File

The Zebra configuration file, read bgbraidx andzebrasrv defaults tazebra.cfy unless specified
by -c option.

You can edit the configuration file with a normal text editor. parameter names and values are separated by
colons in the file. Lines starting with a hash sign ére treated as comments.

Chapter 4. Administrating Zebra

If you manage different sets of records that share common characteristics, you can organize the
configuration settings for each type into "groups". Whebraidx is run and you wish to address a
given group you specify the group name with theoption. In this case settings that have the group
name as their prefix will be used lagbraidx . If no -g option is specified, the settings without prefix
are used.

In the configuration file, the group name is placed before the option name itself, separated by a dot (.).
For instance, to set the record type for grauplic togrs.sgml (the SGML-like format for structured
records) you would write:

public.recordType: grs.sgml

To set the default value of the record typedst write:

recordType: text

The available configuration settings are summarized below. They will be explained further in the
following sections.

FIXME - Didn’t Adam make something to have multiple databases in multiple dirs...

group.recordTypejhamé: type

Specifies how records with the file extensimameshould be handled by the indexer. This option
may also be specified as a command line optior).(Note that if you do not specify mame the
setting applies to all files. In general, the record type specifier consists of the elements (each
element separated by dofyndamental-typdile-read-typeand arguments. Currently, two
fundamental types exiggxt andgrs .

grouprecordld:record-id-spec
Specifies how the records are to be identified when updatedh&&ection calletlocating
Records
group.databasedatabase
Specifies the Z39.50 database name. FIXME - now we can have multiple databases in one server.
-H
group.storeKeyshoolean

Specifies whether key information should be saved for a given group of records. If you plan to
update/delete this type of records later this should be specified as 1; otherwise it should be 0
(default), to save register space. $lae Section callethdexing with File Record IDs

Chapter 4. Administrating Zebra

group.storeDataboolean
Specifies whether the records should be stored internally in the Zebra system files. If you want to
maintain the raw records yourself, this option should be false (0). If you want Zebra to take care of
the records for you, it should be true(1).

registerregister-location
Specifies the location of the various register files that Zebra uses to represent your databases. See
the Section calle®Register Location

shadowregister-location
Enables theafe updatdacility of Zebra, and tells the system where to place the required,
temporary files. Sethe Section calle@afe Updating - Using Shadow Registers

lockDir: directory

Directory in which various lock files are stored.

keyTmpDir:directory

Directory in which temporary files used during zebraidx’ update phase are stored.

setTmpDir:directory
Specifies the directory that the server uses for temporary result sets. If not sp@aifiedill be
used.

profilePathpath
Specifies a path of profile specification files. The path is composed of one or more directories
separated by colon. Similar to PATH for UNIX systems.

attset:filename

Specifies the filename(s) of attribute set files for use in searching. At least the Bib-1 set should be
loaded bibl.att). TheprofilePath setting is used to look for the specified files. S
Section called'he Attribute Set (.att) Fileim Chapter 7

memMax:size
Specifiessize of internal memory to use for the zebraidx program. The amount is given in
megabytes - default is 4 (4 MB).

root: dir

Specifies a directory base for Zebra. All relative paths given (in profilePath, register, shadow) are
based on this directory. This setting is useful if if you Zebra server is running in a different directory
from wherezebra.cfg is located.

Chapter 4. Administrating Zebra

Locating Records

The default behavior of the Zebra system is to reference the records from their original location, i.e.
where they were found when you rasbraidx . That is, when a client wishes to retrieve a record

following a search operation, the files are accessed from the place where you originally put them - if you
remove the files (without runningebraidx again, the client will receive a diagnostic message.

If your input files are not permanent - for example if you retrieve your records from an outside source, or
if they were temporarily mounted on a CD-ROM drive, you may want Zebra to make an internal copy of
them. To do this, you specify 1 (true) in tewreData setting. When the Z39.50 server retrieves the
records they will be read from the internal file structures of the system.

Indexing with no Record IDs (Simple Indexing)

If you have a set of records that are not expected to change over time you may can build your database
without record IDs. This indexing method uses less space than the other methods and is simple to use.

To use this method, you simply omit thecordid ~ entry for the group of files that you index. To add a

set of records you ussebraidx ~ with theupdate command. Thepdate command will always add all

of the records that it encounters to the index - whether they have already been indexed or not. If the set of
indexed files change, you should delete all of the index files, and build a new index from scratch.

Consider a system in which you have a group of text files caitadie . That group of records should
belong to a Z39.50 database caltegtbase . The followingzebra.cfg file will suffice:

profilePath: /usr/locallyaz
attset: bibl.att
simple.recordType: text
simple.database: textbase

Since the existing records in an index can not be addressed by their IDs, it is impossible to delete or
modify records when using this method.

Indexing with File Record IDs

If you have a set of files that regularly change over time: Old files are deleted, new ones are added, or
existing files are modified, you can benefit from usingftleslD indexing methodology. Examples of

this type of database might include an index of WWW resources, or a USENET news spool area. Briefly
speaking, the file key methodology uses the directory paths of the individual records as a unique
identifier for each record. To perform indexing of a directory with file keys, again, you specify the

top-level directory after thepdate command. The command will recursively traverse the directories

and compare each one with whatever have been indexed before in that same directory. If a file is new (not
in the previous version of the directory) it is inserted into the registers; if a file was already indexed and it
has been modified since the last update, the index is also modified; if a file has been removed since the
last visit, it is deleted from the index.

Chapter 4. Administrating Zebra

The resulting system is easy to administrate. To delete a record you simply have to delete the
corresponding file (say, with then command). And to add records you create new files (or directories

with files). For your changes to take effect in the register you mustebiraidx update with the

same directory root again. This mode of operation requires more disk space than simpler indexing
methods, but it makes it easier for you to keep the index in sync with a frequently changing set of data. If
you combine this system with tleafe updatdacility (see below), you never have to take your server
off-line for maintenance or register updating purposes.

To enable indexing with pathname IDs, you must spefiidy as the value ofecordld in the

configuration file. In addition, you should ssbreKeys to 1, since the Zebra indexer must save

additional information about the contents of each record in order to modify the indices correctly at a later
time.

FIXME - There must be a simpler way to do this with Adams string tags -H

For example, to update records of grasgold located belowdatal/records/ you should type:

$ zebraidx -g esdd update /datal/records

The corresponding configuration file includes:

esdd.recordld: file
esdd.recordType: grs.sgmil
esdd.storeKeys: 1

Note: You cannot start out with a group of records with simple indexing (no record IDs as in the
previous section) and then later enable file record Ids. Zebra must know from the first time that you
index the group that the files should be indexed with file record IDs.

You cannot explicitly delete records when using this method (usingdleéee command taebraidx
Instead you have to delete the files from the file system (or move them to a different location) and then
runzebraidx with theupdate command.

Indexing with General Record IDs

When using this method you construct an (almost) arbitrary, internal record key based on the contents of
the record itself and other system information. If you have a group of records that explicitly associates an
ID with each record, this method is convenient. For example, the record format may contain a title or a
ID-number - unigue within the group. In either case you specify the Z239.50 attribute set and use-attribute
location in which this information is stored, and the system looks at that field to determine the identity of
the record.

10

Chapter 4. Administrating Zebra

As before, the record ID is defined by theeordld setting in the configuration file. The value of the
record ID specification consists of one or more tokens separated by whitespace. The resulting ID is
represented in the index by concatenating the tokens and separating them by ASCII value (1).

There are three kinds of tokens:

Internal record info
The token refers to a key that is extracted from the record. The syntax of this tokeetis use) ,
wheresetis the attribute set nameseis the name or value of the attribute.
System variable
The system variables are preceded by
$

and immediately followed by the system variable name, which may one of

group
Group name.
database
Current database specified.
type

Record type.

Constant string

A string used as part of the ID — surrounded by single- or double quotes.

For instance, the sample GILS records that come with the Zebra distribution contain a unique ID in the

data tagged Control-ldentifier. The data is mapped to the Bib-1 use attribute Identifier-standard (code
1007). To use this field as a record id, specifip1,Identifier-standard) as the value of the

recordld in the configuration file. If you have other record types that uses the same field for a different
purpose, you might add the record type (or group or database name) to the record id of the gils records as

well, to prevent matches with other types of records. In this case the recordld might be set like this:

gils.recordld: $type (bibl,ldentifier-standard)

(seethe Section calle€onfiguring Your Data Modeh Chapter 7#or details of how the mapping
between elements of your records and searchable attributes is established).

As for the file record ID case described in the previous section, updating your system is simply a matter

of runningzebraidx with theupdate command. However, the update with general keys is

considerably slower than with file record IDs, since all files visited must be (re)read to discover their IDs.

11

Chapter 4. Administrating Zebra

As you might expect, when using the general record IDs method, you can only add or modify existing
records with thaipdate command. If you wish to delete records, you must usedélete command,
with a directory as a parameter. This will remove all records that match the files below that root directory.

Register Location

Normally, the index files that form dictionaries, inverted files, record info, etc., are stored in the directory
where you rureebraidx . If you wish to store these, possibly large, files somewhere else, you must add
theregister entry to thezebra.cfg file. Furthermore, the Zebra system allows its file structures to
span multiple file systems, which is useful for managing very large databases.

The value of theegister setting is a sequence of tokens. Each token takes the form:

dir :size .

Thedir specifies a directory in which index files will be stored andgtzespecifies the maximum size

of all files in that directory. The Zebra indexer system fills each directory in the order specified and use
the next specified directories as needed. Jikeis an integer followed by a qualifier codefor bytes,k

for kilobytes.Mfor megabytesG for gigabytes.

For instance, if you have allocated two disks for your register, and the first disk is mountétd and
has 2GB of free space and the second, mountedarhas 3.6 GB, you could put this entry in your
configuration file:

register: /d1:2G /d2:3600M

Note that Zebra does not verify that the amount of space specified is actually available on the directory
(file system) specified - it is your responsibility to ensure that enough space is available, and that other
applications do not attempt to use the free space. In a large production system, it is recommended that
you allocate one or more file system exclusively to the Zebra register files.

Safe Updating - Using Shadow Registers

Description

The Zebra server suppoupdatingof the index structures. That is, you can add, modify, or remove

records from databases managed by Zebra without rebuilding the entire index. Since this process
involves modifying structured files with various references between blocks of data in the files, the update
process is inherently sensitive to system crashes, or to process interruptions: Anything but a successfully
completed update process will leave the register files in an unknown state, and you will essentially have
no recourse but to re-index everything, or to restore the register files from a backup medium. Further,
while the update process is active, users cannot be allowed to access the system, as the contents of the
register files may change unpredictably.

12

Chapter 4. Administrating Zebra

You can solve these problems by enabling the shadow register system in Zebra. During the updating
procedurezebraidx will temporarily write changes to the involved files in a set of "shadow files",
without modifying the files that are accessed by the active server processes. If the update procedure is
interrupted by a system crash or a signal, you simply repeat the procedure - the register files have not
been changed or damaged, and the partially written shadow files are automatically deleted before the
new updating procedure commences.

At the end of the updating procedure (or in a separate operation, if you so desire), the system enters a
"commit mode". First, any active server processes are forced to access those blocks that have been
changed from the shadow files rather than from the main register files; the unmodified blocks are still
accessed at their normal location (the shadow files are not a complete copy of the register files - they only
contain those parts that have actually been modified). If the commit process is interrupted at any point
during the commit process, the server processes will continue to access the shadow files until you can
repeat the commit procedure and complete the writing of data to the main register files. You can perform
multiple update operations to the registers before you commit the changes to the system files, or you can
execute the commit operation at the end of each update operation. When the commit phase has
completed successfully, any running server processes are instructed to switch their operations to the new,
operational register, and the temporary shadow files are deleted.

How to Use Shadow Register Files

The first step is to allocate space on your system for the shadow files. You do this by addénigwa

entry to thezebra.cfg file. The syntax of thahadow entry is exactly the same as for ttegjister

entry (seghe Section calle®egister Location The location of the shadow area shoulddiféerentfrom

the location of the main register area (if you have specified one - remember that if you provide no
register setting, the default register area is the working directory of the server and indexing processes).

The following excerpt from aebra.cfg file shows one example of a setup that configures both the

main register location and the shadow file area. Note that two directories or partitions have been set aside
for the shadow file area. You can specify any number of directories for each of the file areas, but
remember that there should be no overlaps between the directories used for the main registers and the
shadow files, respectively.

register: /d1:500M

shadow: /scratch1:100M /scratch2:200M

When shadow files are enabled, an extra command is availablezittaglx command line. In order

to make changes to the system take effect for the users, you'll have to submit a "commit" command after
a (sequence of) update operation(s). You can ask the indexer to commit the changes immediately after
the update operation:

$ zebraidx update /d1/records update /d2/more-records commit

13

Chapter 4. Administrating Zebra

Or you can execute multiple updates before committing the changes:

$ zebraidx -g books update /dl/records update /d2/more-records
$ zebraidx -g fun update /d3/fun-records
$ zebraidx commit

If one of the update operations above had been interrupted, the commit operation on the last line would
fail: zebraidx will not let you commit changes that would destroy the running register. You'll have to
rerun all of the update operations since your last commit operation, before you can commit the new
changes.

Similarly, if the commit operation failsgebraidx will not let you start a new update operation before
you have successfully repeated the commit operation. The server processes will keep accessing the
shadow files rather than the (possibly damaged) blocks of the main register files until the commit
operation has successfully completed.

You should be aware that update operations may take slightly longer when the shadow register system is
enabled, since more file access operations are involved. Further, while the disk space required for the
shadow register data is modest for a small update operation, you may prefer to disable the system if you
are adding a very large number of records to an already very large database (we use tteedesnsl
modestvery loosely here, since every application will have a different perception of size). To update the
system without the use of the the shadow files, simplyztimaidx ~ with the-n option (note that you

do not have to execute ttemmitcommand ofebraidx when you temporarily disable the use of the
shadow registers in this fashion. Note also that, just as when the shadow registers are not enabled, server
processes will be barred from accessing the main register while the update procedure takes place.

14

Chapter 5. Running the Maintenance Interface
(zebraidx)

The following is a complete reference to the command line interface teethreidx application.

Syntax

$ zebraidx [options] command [directory] ...

Options:

-t type

-c config-file

-g group

-d database

-l file

-m mbytes

Update all files atype . Currently, the types supported aset andgrs .subtype .If no

subtype is provided for the GRS (General Record Structure) type, the canonical input format is
assumed (sethe Section calletlocal Representatioim Chapter J. Generally, it is probably
advisable to specify the record types in teera.cfy file (seethe Section calle@Record Typem
Chapter 4, to avoid confusion at subsequent updates.

Read the configuration fileonfig-file instead ofzebra.cfg

Update the files according to the group settinggyimup (seethe Section calledhe Zebra
Configuration Filein Chapter 4.

The records located should be associated with the databasedatabase for access through
the Z239.50 server.

Write log messages file instead oftderr

Usembytes of memory before flushing keys to background storage. This setting affects
performance when updating large databases.

Disable the use of shadow registers for this operationtfe&ection calle@afe Updating - Using
Shadow Registeiia Chapter 4.

Show analysis of the indexing process. The maintenance program works in a read-only mode and
doesn’t change the state of the index. This options is very useful when you wish to test a new profile.

15

Chapter 5. Running the Maintenance Interface (zebraidx)

Show Zebra version.

-v level

Set the log level téevel .level should be one afione, debug, andall .

Commands

updatedirectory
Update the register with the files containedlirectory . If no directory is provided, a list of
files is read fronstdin . SeeChapter 4

deletedirectory

Remove the records corresponding to the files found udidectory from the register.

commit

Write the changes resulting from the lagtlate commands to the register. This command is only
available if the use of shadow register files is enabledffse&ection calle®afe Updating - Using
Shadow Registelia Chapter 4.

16

Chapter 6. The Z39.50 Server

Running the Z39.50 Server (zebrasrv)

FIXME - We need to be consistent here, zebraidx had the options at the end, and lots of explaining text
before them. Same for zebrasvr! -H FIXME - At least we need a small intro, what is zebrasvr, and how it
can be run (inetd, nt service, stand-alone program, daemon...) -H

Syntax

zebrasrv [options] [listener-address ...]

Options

-aAPDU file

-c config-file

-l logfile

-v log-level

-uusername

Specify a file for dumping PDUs (for diagnostic purposes). The special name "-" sends output to
stderr

Read configuration information frogonfig-file . The default configuration igzebra.cfg

Don't fork on connection requests. This can be useful for symbolic-level debugging. The server can
only accept a single connection in this mode.

Use the Z39.50 protocol. Currently the only protocol supported. The option is retained for
historical reasons, and for future extensions.

Specify an output file for the diagnostic messages. The default is to write this information to
stderr

The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,all,none}.

Set user ID. Sets the real UID of the server process to that of the géemame . It's useful if
you aren’t comfortable with having the server run as root, but you need to start it as such to bind a
privileged port.

-w working-directory

Change working directory.

17

Chapter 6. The Z39.50 Server

Run under the Internet supersenisetd . Make sure you use the logfile optien in conjunction
with this mode and specify thé option before any other options.

-t timeout
Set the idle session timeout (default 60 minutes).
-k kilobytes
Set the (approximate) maximum size of present response messages. Default is 1024 KB (1 MB).
A listener-address consists of an optional transport mode followed by a colon (;) followed by a

listener address. The transport mode is eitiserortcp (default).

For TCP, an address has the form

hostname | IP-number [portnumber]

The port number defaults to 210 (standard 239.50 port) for privileged users (root), and 9999 for normal
users.

Examples

tcp:dranet.dra.com

ssl:secure.lib.com:3000

In both cases, the special hosthame "@" is mapped to the address INADDR_ANY, which causes the
server to listen on any local interface. To start the server listening on the registered port for 239.50, and
to drop root privileges once the ports are bound, execute the server like this (from a root shell):

zebrasrv -u daemon @

You can replacélaemon with another user, eg. your own account, or a dedicated IR server account.

The default behavior farebrasrv is to establish a single TCP/IP listener, for the Z39.50 protocol, on
port 9999.

18

Chapter 6. The Z39.50 Server

Z39.50 Protocol Support and Behavior

Initialization

During initialization, the server will negotiate to version 3 of the Z39.50 protocol, and the option bits for
Search, Present, Scan, NamedResultSets, and concurrentOperations will be set, if requested by the client.
The maximum PDU size is negotiated down to a maximum of 1 MB by default.

Search

FIXME - Need to explain the string tag stuff before people get bogged down with all these attribute
numbers. Perhaps in its own chapter? -H

The supported query type are 1 and 101. All operators are currently supported with the restriction that
only proximity units of type "word" are supported for the proximity operator. Queries can be arbitrarily
complex. Named result sets are supported, and result sets can be used as operands without limitations.
Searches may span multiple databases.

The server has full support for piggy-backed present requests (see also the following section).

Useattributes are interpreted according to the attribute sets which have been loadezkeiyritg
file, and are matched against specific fields as specified inalthe file which describes the profile of the
records which have been loaded. If no Use attribute is provided, a default of Bib-1 Any is assumed.

If a Structureattribute ofPhraseis used in conjunction with &ompletenesattribute ofComplete
(Sub)field the term is matched against the contents of the phrase (long word) register, if one exists for the
givenUseattribute. A phrase register is created for those fields indbee file that contains @-specifier.

If Structure=Phraseis used in conjunction wititncomplete Field the default value foCompleteness

the search is directed against the normal word registers, but if the term contains multiple words, the term
will only match if all of the words are found immediately adjacent, and in the given order. The word
search is performed on those fields that are indexed asitipthe .abs file.

If the Structureattribute isWord List Free-form Textor Document Texthe term is treated as a
natural-language, relevance-ranked query. This search type uses the word register, i.e. those fields that
are indexed as typein the.abs file.

If the Structureattribute isNumeric Stringhe term is treated as an integer. The search is performed on
those fields that are indexed as typi the.abs file.

If the Structureattribute isURxthe term is treated as a URX (URL) entity. The search is performed on
those fields that are indexed as typm the.abs file.

If the Structureattribute isLocal Numbeithe term is treated as native Zebra Record |dentifier.

If the Relationattribute isEquals(default), the term is matched in a normal fashion (modulo truncation
and processing of individual words, if required)R€lationis Less ThanLess Than or EqualGreater

than or Greater than or Equalthe term is assumed to be numerical, and a standard regular expression is
constructed to match the given expressiofRédfationis Relevancgthe standard natural-language query
processor is invoked.

For theTruncationattribute,No Truncationis the defaultLeft Truncationis not supportedProcess #s
supported, as iRegxp-1Regxp-2nables the fault-tolerant (fuzzy) search. As a default, a single error
(deletion, insertion, replacement) is accepted when terms are matched against the register contents.

19

[.]

X*

X+

X?

Xy

x|y

Chapter 6. The Z39.50 Server

Regular expressions

Each term in a query is interpreted as a regular expression if the truncation value ifRkeixer1(102)
or Regxp-A103). Both query types follow the same syntax with the operands:

Matches the charactar

Matches any character.

Matches the set of characters specified; suda@$ or [a-c]

and the operators:

Matchesx zero or more times. Priority: high.

Matchesx one or more times. Priority: high.

Matchesx once or twice. Priority: high. FIXME Is this right? Std regexp has '?’ meaning zero or
one -H

Matchesx, theny. Priority: medium.

Matches eithexr ory. Priority: low.
The order of evaluation may be changed by using parentheses.

If the first character of thegxp-Zjuery is a plus character)it marks the beginning of a section with
non-standard specifiers. The next plus character marks the end of the section. Currently Zebra only
supports one specifier, the error tolerance, which consists one digit.

Since the plus operator is normally a suffix operator the addition to the query syntax doesn't violate the

syntax for standard regular expressions.
Query examples

Phrase search fanformation retrievalin the title-register:

@attr 1=4 "information retrieval"

20

Chapter 6. The Z39.50 Server

Ranked search for the same thing:

@attr 1=4 @attr 2=102 "Information retrieval"

Phrase search with a regular expression:

@attr 1=4 @attr 5=102 "informat.* retrieval"

Ranked search with a regular expression:

@attr 1=4 @attr 5=102 @attr 2=102 "informat.* retrieval"

In the GILS schemagfls.abs), the west-bounding-coordinate is indexed as typand is therefore
searched by specifyingtructureeNumeric String To match all those records with
west-bounding-coordinate greater than -114 we use the following query:

@attr 4=109 @attr 2=5 @attr gils 1=2038 -114

Present

The present facility is supported in a standard fashion. The requested record syntax is matched against the
ones supported by the profile of each record retrieved. If no record syntax is given, SUTRS is the default.
The requested element set name, again, is matched against any provided by the relevant record profiles.

Scan

The attribute combinations provided with the termListAndStartPoint are processed in the same way as
operands in a query (see above). Currently, only the term and the globalOccurrences are returned with
the terminfo structure.

Sort

Z39.50 specifies three different types of sort criteria. Of these Zebra supports the attribute specification
type in which case the use attribute specifies the "Sort register". Sort registers are created for those fields
that are of type "sort" in the default.idx file. The corresponding character mapping file in default.idx
specifies the ordinal of each character used in the actual sort.

21

Chapter 6. The Z39.50 Server

Z39.50 allows the client to specify sorting on one or more input result sets and one output result set.
Zebra supports sorting on one result set only which may or may not be the same as the output result set.

Close

If a Close PDU is received, the server will respond with a Close PDU with reason=FINISHED, no matter
which protocol version was negotiated during initialization. If the protocol version is 3 or more, the
server will generate a Close PDU under certain circumstances, including a session timeout (60 minutes
by default), and certain kinds of protocol errors. Once a Close PDU has been sent, the protocol
association is considered broken, and the transport connection will be closed immediately upon receipt
of further data, or following a short timeout.

22

Chapter 7. The Record Model

The Zebra system is designed to support a wide range of data management applications. The system can
be configured to handle virtually any kind of structured data. Each record in the system is associated with
arecord schemavhich lends context to the data elements of the record. Any number of record schema

can coexist in the system. Although it may be wise to use only a single schema within one database, the
system poses no such restrictions.

The record model described in this chapter applies to the fundamental, structured recard tgse
introduced inthe Section calle®Record Types Chapter 4FIXME - Need to describe the simple
string-tag model, or at least refer to it here. -H

Records pass through three different states during processing in the system.

- When records are accessed by the system, they are represented in their local, or native format. This
might be SGML or HTML files, News or Mail archives, MARC records. If the system doesn'’t already
know how to read the type of data you need to store, you can set up an input filter by preparing
conversion rules based on regular expressions and possibly augmented by a flexible scripting language
(Tcl). The input filter produces as output an internal representation:

« When records are processed by the system, they are represented in a tree-structure, constructed by
tagged data elements hanging off a root node. The tagged elements may contain data or yet more
tagged elements in a recursive structure. The system performs various actions on this tree structure
(indexing, element selection, schema mapping, etc.),

- Before transmitting records to the client, they are first converted from the internal structure to a form
suitable for exchange over the network - according to the Z39.50 standard.

Local Representation

grs.sgmi

As mentioned earlier, Zebra places few restrictions on the type of data that you can index and manage.
Generally, whatever the form of the data, it is parsed by an input filter specific to that format, and turned
into an internal structure that Zebra knows how to handle. This process takes place whenever the record
is accessed - for indexing and retrieval.

The RecordType parameter in thebra.cfg file, or the-t option to the indexer tells Zebra how to

process input records. Two basic types of processing are available - raw text and structured data. Raw
text is just that, and it is selected by providing the arguntexttto Zebra. Structured records are all

handled internally using the basic mechanisms described in the subsequent sections. Zebra can read
structured records in many different formats. How this is done is governed by additional parameters after

the "grs" keyboard, separated by "." characters.

Four basic subtypes to thgstype are currently available:

This is the canonical input format — described below. It is a simple SGML-like syntax.

23

Chapter 7. The Record Model

grs.regxilter

This enables a user-supplied input filter. The mechanisms of these filters are described below.

grs.tclfilter

Similar to grs.regx but using Tcl for rules.

grs.marcabstract syntax

This allows Zebra to read records in the 1ISO2709 (MARC) encoding standard. In this case, the last
parameteabstract syntaxiames theabs file (see below) which describes the specific MARC
structure of the input record as well as the indexing rules.

Canonical Input Format

Although input data can take any form, it is sometimes useful to describe the record processing
capabilities of the system in terms of a single, canonical input format that gives access to the full
spectrum of structure and flexibility in the system. In Zebra, this canonical format is an "SGML-like"
syntax.

To use the canonical format specifis.sgml as the record type.

Consider a record describing an information resource (such a record is sometimes kndoceatsra
record). It might contain a field describing the distributor of the information resource, which might in
turn be partitioned into various fields providing details about the distributor, like this:

<Distributor>

<Name> USGS/WRD </Name>
<Organization> USGS/WRD </Organization>
<Street-Address>

U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
</Street-Address>

<City> ALBUQUERQUE </City>

<State> NM </State>

<Zip-Code> 87102 </Zip-Code>

<Country> USA </Country>

<Telephone> (505) 766-5560 </Telephone>
</Distributor>

Note: The indentation used above is used to illustrate how Zebra interprets the mark-up. The
indentation, in itself, has no significance to the parser for the canonical input format, which discards
superfluous whitespace.

The keywords surrounded by <...> dags while the sections of text in between are ttada elements
A data element is characterized by its location in the tree that is made up by the nested elements. Each
element is terminated by a closing tag - beginning withand containing the same symbolic tag-name

24

Chapter 7. The Record Model

as the corresponding opening tag. The general closingtag—terminates the element started by the
last opening tag. The structuring of elements is significant. The elefeéaphonefor instance, may be
indexed and presented to the client differently, depending on whether it appears indhigttieitor
element, or some other, structured data element s&tpplierelement.

Record Root

The first tag in a record describes the root node of the tree that makes up the total record. In the canonical
input format, the root tag should contain the name of the schema that lends context to the elements of the
record (se¢he Section callethternal RepresentatignThe following is a GILS record that contains only

a single element (strictly speaking, that makes it an illegal GILS record, since the GILS profile includes
several mandatory elements - Zebra does not validate the contents of a record against the Z39.50 profile,
however - it merely attempts to match up elements of a local representation with the given schema):

<gils>
<titte>Zen and the Art of Motorcycle Maintenance</title>
</qgils>

Variants

Zebra allows you to provide individual data elements in a numbganént forms Examples of variant
forms are textual data elements which might appear in different languages, and images which may
appear in different formats or layouts. The variant system in Zebra is essentially a representation of the
variant mechanism of Z39.50-1995.

The following is an example of a title element which occurs in two different languages.

<title>

<var lang lang "eng">

Zen and the Art of Motorcycle Maintenance</>
<var lang lang "dan">

Zen og Kunsten at Vedligeholde en Motorcykel</>
</title>

The syntax of thevariant elements <var class type value> . The available values for th@assand
typefields are given by the variant set that is associated with the current schentiag(Sstion called
The Variant Set (.var) Filgs

Variant elements are terminated by the general end-tag </>, by the variant end-tag </var>, by the
appearance of another variant tag with the salassandvaluesettings, or by the appearance of another,
normal tag. In other words, the end-tags for the variants used in the example above could have been
saved.

Variant elements can be nested. The element

25

INIT

BEGIN

Chapter 7. The Record Model

<title>

<var lang lang "eng"><var body iana "text/plain">
Zen and the Art of Motorcycle Maintenance
</title>

Associates two variant components to the variant list for the title element.

Given the nesting rules described above, we could write

<title>

<var body iana "text/plain>

<var lang lang "eng">

Zen and the Art of Motorcycle Maintenance
<var lang lang "dan">

Zen og Kunsten at Vedligeholde en Motorcykel
<[title>

The title element above comes in two variants. Both have the IANA body type "text/plain”, but one is in
English, and the other in Danish. The client, using the element selection mechanism of 239.50, can
retrieve information about the available variant forms of data elements, or it can select specific variants
based on the requirements of the end-user.

Input Filters

In order to handle general input formats, Zebra allows the operator to define filters which read individual
records in their native format and produce an internal representation that the system can work with.

Input filters are ASCII files, generally with the sufftk . The system looks for the files in the
directories given in therofilePathsetting in thezebra.cfg files. The record type for the filter is
grs.regx. filter-filename(fundamental typers |, file read typaegx , argumenfilter-filenam@.

Generally, an input filter consists of a sequence of rules, where each rule consists of a sequence of
expressions, followed by an action. The expressions are evaluated against the contents of the input
record, and the actions normally contribute to the generation of an internal representation of the record.

An expression can be either of the following:

The action associated with this expression is evaluated exactly once in the lifetime of the
application, before any records are read. It can be used in conjunction with an action that initializes
tables or other resources that are used in the processing of input records.

Matches the beginning of the record. It can be used to initialize variables, etc. TypicaBE Gk
rule is also used to establish the root node of the record.

26

END

/pattern/

BODY

FINISH

Chapter 7. The Record Model

Matches the end of the record - when all of the contents of the record has been processed.

Matches a string of characters from the input record.

This keyword may only be used between two patterns. It matches everything between (not
including) those patterns.

The expression associated with this pattern is evaluated once, before the application terminates. It
can be used to release system resources - typically ones allocatedhtifretep.

An action is surrounded by curly braces ({...}), and consists of a sequence of statements. Statements may
be separated by newlines or semicolons (;). Within actions, the strings that matched the expressions
immediately preceding the action can be referred to as $0, $1, $2, etc.

The available statements are:

begintype [parameter ...]

record

element

variant

data

Begin a new data element. The type is one of the following:

Begin a new record. The following parameter should be the name of the schema that describes
the structure of the record, egjls orwais (see below). Theegin record call should
precede any other use of theginstatement.

Begin a new tagged element. The parameter is the name of the tag. If the tag is not matched
anywhere in the tagsets referenced by the current schema, it is treated as a local string tag.

Begin a new node in a variant tree. The parameterslass type value

Create a data element. The concatenated arguments make up the value of the data element. The
option-text signals that the layout (whitespace) of the data should be retained for transmission.
The option-element tagwraps the data up in thag. The use of theelement option is

equivalent to preceding the command withegin elementommand, and following it with thend
command.

27

end[type]

Chapter 7. The Record Model

Close a tagged element. If no parameter is given, the last element on the stack is terminated. The
first parameter, if any, is a type name, similar to bieginstatement. For thelementype, a tag
name can be provided to terminate a specific tag.

The following input filter reads a Usenet news file, producing a record in the WAIS schema. Note that the
body of a news posting is separated from the list of headers by a blank line (or rather a sequence of two
newline characters.

BEGIN { begin record wais }

/"From:/ BODY /$/ { data -element name $1 }
/"Subject:/ BODY /$/ { data -element title $1 }
/"Date:/ BODY /$/ { data -element lastModified $1 }
An\n/ BODY END {

begin element bodyOfDisplay

begin variant body iana "text/plain”

data -text $1

end record

If Zebra is compiled with support for Tcl (Tool Command Language) enabled, the statements described
above are supplemented with a complete scripting environment, including control structures (conditional
expressions and loop constructs), and powerful string manipulation mechanisms for modifying the
elements of a record. Tcl is a popular scripting environment, with several tutorials available both online
and in hardcopy.

Internal Representation

When records are manipulated by the system, they're represented in a tree-structure, with data elements
at the leaf nodes, and tags or variant components at the non-leaf nodes. The root-node identifies the
schema that lends context to the tagging and structuring of the record. Imagine a simple record,
consisting of a 'title’ element and an 'author’ element:

TITLE "Zen and the Art of Motorcycle Maintenance"
ROOT
AUTHOR "Robert Pirsig"

A slightly more complex record would have the author element consist of two elements, a surname and a
first name:

TITLE "Zen and the Art of Motorcycle Maintenance"

28

Chapter 7. The Record Model

ROOT

FIRST-NAME "Robert"
AUTHOR

SURNAME "Pirsig"

The root of the record will refer to the record schema that describes the structuring of this particular
record. The schema defines the element tags (TITLE, FIRST-NAME, etc.) that may occur in the record,
as well as the structuring (SURNAME should appear below AUTHOR, etc.). In addition, the schema
establishes element set names that are used by the client to request a subset of the elements of a given
record. The schema may also establish rules for converting the record to a different schema, by stating,
for each element, a mapping to a different tag path.

Tagged Elements

A data element is characterized by its tag, and its position in the structure of the record. For instance,
while the tag "telephone number" may be used different places in a record, we may need to distinguish
between these occurrences, both for searching and presentation purposes. For instance, while the phone
numbers for the "customer” and the "service provider" are both representatives for the same type of
resource (a telephone number), it is essential that they be kept separate. The record schema provides the
structure of the record, and names each data element (defined by the sequence of tags - the tag path - by
which the element can be reached from the root of the record).

Variants

The children of a tag nhode may be either more tag nodes, a data node (possibly accompanied by tag
nodes), or a tree of variant nodes. The children of variant nodes are either more variant nodes or a data
node (possibly accompanied by more variant nodes). Each leaf node, which is normally a data node,
corresponds to gariant formof the tagged element identified by the tag which parents the variant tree.
The following title element occurs in two different languages:

VARIANT LANG=ENG "War and Peace"
TITLE
VARIANT LANG=DAN "Krig og Fred"

Which of the two elements are transmitted to the client by the server depends on the specifications
provided by the client, if any.

In practice, each variant node is associated with a triple of class, type, value, corresponding to the variant
mechanism of Z39.50.

Data Elements

Data nodes have no children (they are always leaf nodes in the record tree).

29

Chapter 7. The Record Model

Note: FIXME! Documentation needs extension here about types of nodes - numerical, textual, etc.,
plus the various types of inclusion notes.

Configuring Your Data Model

The following sections describe the configuration files that govern the internal management of data
records. The system searches for the files in the directories specified fpfiePathsetting in the
zebra.cfg file.

The Abstract Syntax

The abstract syntax definition (also known as an Abstract Record Structure, or ARS) is the focal point of
the record schema description. For a given schema, the ABS file may state any or all of the following:

FIXME - Need a diagram here, or a simple explanation how it all hangs together -H

- The object identifier of the Z39.50 schema associated with the ARS, so that it can be referred to by
the client.

« The attribute set (which can possibly be a compound of multiple sets) which applies in the profile.
This is used when indexing and searching the records belonging to the given profile.

« The Tag set (again, this can consist of several different sets). This is used when reading the records
from a file, to recognize the different tags, and when transmitting the record to the client - mapping the
tags to their numerical representation, if they are known.

- The variant set which is used in the profile. This provides a vocabulary for specifyifigrtheof
data that appear inside the records.

- Element set names, which are a shorthand way for the client to ask for a subset of the data elements
contained in a record. Element set names, in the retrieval module, are maygbech&mt
specificationswhich contain information equivalent to tlespec-1syntax of Z39.50.

- Map tables, which may specify mappingsaiter database profiles, if desired.
- Possibly, a set of rules describing the mapping of elements to a MARC representation.

« Alist of element descriptions (this is the actual ARS of the schema, in Z39.50 terms), which lists the
ways in which the various tags can be used and organized hierarchically.

Several of the entries above simply refer to other files, which describe the given objects.

The Configuration Files
This section describes the syntax and use of the various tables which are used by the retrieval module.

The number of different file types may appear daunting at first, but each type corresponds fairly clearly
to a single aspect of the Z39.50 retrieval facilities. Further, the average database administrator, who is

30

Chapter 7. The Record Model
simply reusing an existing profile for which tables already exist, shouldn’t have to worry too much about
the contents of these tables.

Generally, the files are simple ASCII files, which can be maintained using any text editor. Blank lines,
and lines beginning with a (#) are ignored. Any characters on a line followed by a (#) are also ignored.
All other lines contairdirectives which provide some setting or value to the system. Generally, settings
are characterized by a single keyword, identifying the setting, followed by a number of parameters. Some
settings are repeatable (r), while others may occur only once in a file. Some settings are optional (0),
while others again are mandatory (m).

The Abstract Syntax (.abs) Files

The name of this file type is slightly misleading in Z39.50 terms, since, apart from the actual abstract
syntax of the profile, it also includes most of the other definitions that go into a database profile.

When a record in the canonical, SGML-like format is read from a file or from the database, the first tag
of the file should reference the profile that governs the layout of the record. If the first tag of the record is,
say,<gils> , the system will look for the profile definition in the fitggis.abs . Profile definitions are
cached, so they only have to be read once during the lifespan of the current process.

When writing your own input filters, theecord-begincommand introduces the profile, and should
always be called first thing when introducing a new record.

The file may contain the following directives:

namesymbolic-name
(m) This provides a shorthand name or description for the profile. Mostly useful for diagnostic
purposes.

referencedlD-name
(m) The reference name of the OID for the profile. The reference names can be foundtih the
module ofYAZ

attsetfilename

(m) The attribute set that is used for indexing and searching records belonging to this profile.

tagsefilename

(o) The tag set (if any) that describe that fields of the records.

varseffilename

(0) The variant set used in the profile.

maptakbfilename

(o,r) This points to a conversion table that might be used if the client asks for the record in a
different schema from the native one.

31

marcfilename

Chapter 7. The Record Model

(o) Points to a file containing parameters for representing the record contents in the ISO2709
syntax. Read the description of the MARC representation facility below.

esetnam@ame filename

anytags

(o,r) Associates the given element set name with an element selection file. If an (@) is given in
place of the filename, this corresponds to a null mapping for the given element set name.

(o) This directive specifies a list of attributes which should be appended to the attribute list given
for each element. The effect is to make every single element in the abstract syntax searchable by
way of the given attributes. This directive provides an efficient way of supporting free-text
searching across all elements. However, it does increase the size of the index significantly. The
attributes can be qualified with a structure, as inglmedirective below.

elm path name attributes

(o,r) Adds an element to the abstract record syntax of the schemaatimllows the syntax

which is suggested by the Z39.50 document - that is, a sequence of tags separated by slashes (/).
Each tag is given as a comma-separated pair of tag type and -value surrounded by parenthesis. The
nameis the name of the element, and thigributesspecifies which attributes to use when indexing

the element in a comma-separated list. A ! in place of the attribute name is equivalent to specifying
an attribute name identical to the element name. A - in place of the attribute name specifies that no
indexing is to take place for the given element. The attributes can be qualifiefieldathypedo

specify which character set should govern the indexing procedure for that field. The same data
element may be indexed into several different fields, using different character set definitions. See
thethe Section calleffield Structure and Character SefBhe default field type is "w" foword.

Note: The mechanism for controlling indexing is not adequate for complex databases, and will
probably be moved into a separate configuration table eventually.

The following is an excerpt from the abstract syntax file for the GILS profile.

name gils

reference GILS-schema
attset gils.att

tagset gils.tag

varset varl.var

maptab gils-usmarc.map

Element set names

esetname VARIANT gils-variant.est # for WAIS-compliance
esetname B gils-b.est

esetname G gils-g.est
esethname F @

32

Chapter 7. The Record Model

elm (1,10) rank -
elm (1,12) url -
elm (1,14) localControlNumber Local-number
elm (1,16) dateOfLastModification Date/time-last-modified
elm (2,1) title w:lp:!
elm (4,1) controlldentifier Identifier-standard
elm (2,6) abstract Abstract
elm (4,51) purpose !
elm (4,52) originator -

elm (4,53) accessConstraints !

elm (4,54) useConstraints !

elm (4,70) availability -

elm (4,70)/(4,90) distributor -

elm (4,70)/(4,90)/(2,7) distributorName !
elm (4,70)/(4,90)/(2,10 distributorOrganization !
elm (4,70)/(4,90)/(4,2) distributorStreetAddress !
elm (4,70)/(4,90)/(4,3) distributorCity !

The Attribute Set (.att) Files

This file type describes thdseelements of an attribute set. It contains the following directives.

namesymbolic-name

(m) This provides a shorthand name or description for the attribute set. Mostly useful for diagnostic
purposes.

referencédID-name

(m) The reference name of the OID for the attribute set. The reference names can be found in the
util module ofYAZ

includefilename

(o,r) This directive is used to include another attribute set as a part of the current one. This is used
when a new attribute set is defined as an extension to another set. For instance, many new attribute
sets are defined as extensions tolilie1 set. This is an important feature of the retrieval system of
Z39.50, as it ensures the highest possible level of interoperability, as those access points of your
database which are derived from the external set (say, bib-1) can be used even by clients who are
unaware of the new set.

attatt-value att-name [local-value]

(o,r) This repeatable directive introduces a new attribute to the set. The attribute value is stored in
the index (unless kbcal-valueis given, in which case this is stored). The name is used to refer to
the attribute from thabstract syntax

33

Chapter 7. The Record Model

This is an excerpt from the GILS attribute set definition. Notice how the file describirgjlihattribute
set is referenced.

name gils
reference GILS-attset
include bibl.att

att 2001 distributorName

att 2002 indextermsControlled
att 2003 purpose

att 2004 accessConstraints
att 2005 useConstraints

The Tag Set (.tag) Files

This file type defines the tagset of the profile, possibly by referencing other tag sets (most tag sets, for
instance, will include tagsetG and tagsetM from the Z239.50 specification. The file may contain the
following directives.

namesymbolic-name
(m) This provides a shorthand name or description for the tag set. Mostly useful for diagnostic
purposes.
referenceédlD-name
(o) The reference name of the OID for the tag set. The reference names can be foundtiin the
module ofYAZ The directive is optional, since not all tag sets are registered outside of their schema.
typeinteger
(m) The type number of the tagset within the schema profile (note: this specification really should
belong to the .abs file. This will be fixed in a future release).
includefilename

(o,r) This directive is used to include the definitions of other tag sets into the current one.

tagnumber names type

(o,r) Introduces a new tag to the set. Thenberis the tag number as used in the protocol (there is
currently no mechanism for specifying string tags at this point, but this would be quick work to
add). Thenamegparameter is a list of names by which the tag should be recognized in the input file
format. The names should be separated by slashes (/typais the recommended data type of the
tag. It should be one of the following:

. structured
. string

. numeric

34

Chapter 7. The Record Model

+ bool

. oid

. generalizedtime
« intunit

. int

« octetstring

« null

The following is an excerpt from the TagsetG definition file.

name tagsetg
reference TagsetG

type 2

tag 1 title string

tag 2 author string

tag 3 publicationPlace string
tag 4 publicationDate string
tag 5 documentld string

tag 6 abstract string

tag 7 name string

tag 8 date generalizedtime

tag 9 bodyOfDisplay string

tag 10 organization string

The Variant Set (.var) Files

The variant set file is a straightforward representation of the variant set definitions associated with the
protocol. At present, only theariant-1set is known.

These are the directives allowed in the file.

namesymbolic-name
(m) This provides a shorthand name or description for the variant set. Mostly useful for diagnostic
purposes.

referencedlD-name
(o) The reference name of the OID for the variant set, if one is required. The reference names can
be found in theutil module ofYAZ

classinteger class-name

(m,r) Introduces a new class to the variant set.

35

Chapter 7. The Record Model

typeinteger type-name datatype

(m,r) Addes a new type to the current class (the one introduced by the mostclkssdiirective).
The type names belong to the same name space as the one used in the tag set definition file.

The following is an excerpt from the file describing the variani\getant-1

name variant-1
reference Variant-1

class 1 variantld
type 1 variantld octetstring
class 2 body

type 1 iana string
type 2 z39.50 string
type 3 other string

The Element Set (.est) Files

The element set specification files describe a selection of a subset of the elements of a database record.
The element selection mechanism is equivalent to the one supplied Bgplee-1syntax of the Z39.50
specification. In fact, the internal representation of an element set specification is identicat spéuel
structure, and we’ll refer you to the description of that structure for most of the detailed semantics of the
directives below.

Note: Not all of the Espec-1 functionality has been implemented yet. The fields that are mentioned
below all work as expected, unless otherwise is noted.

The directives available in the element set file are as follows:

defaultVariantSetldID-name

(o) If variants are used in the following, this should provide the name of the variantset used (it's not
currently possible to specify a different set in the individual variant request). In almost all cases
(certainly all profiles known to us), the narveriant-1 ~ should be given here.

defaultVariantRequesfariant-request

(o) This directive provides a default variant request for use when the individual element requests
(see below) do not contain a variant request. Variant requests consist of a blank-separated list of
variant components. A variant compont is a comma-separated, parenthesized triple of variant class,
type, and value (the two former values being represented as integers). The value can currently only

36

Chapter 7. The Record Model

be entered as a string (this will change to depend on the definition of the variant in question). The
special value (@) is interpreted as a null value, however.

simpleElemenpath ['variant’ variant-request]

(o,r) This corresponds to a simple element requeEiipec-1 The path consists of a sequence of
tag-selectors, where each of these can consist of either:

« A simple tag, consisting of a comma-separated type-value pair in parenthesis, possibly followed
by a colon (:) followed by an occurrences-specification (see below). The tag-value can be a
number or a string. If the first character is an apostrophe ('), this forces the value to be interpreted
as a string, even if it appears to be numerical.

- A WildThing, represented as a question mark (?), possibly followed by a colon (:) followed by
an occurrences specification (see below).

« A WildPath, represented as an asterisk (*). Note that the last element of the path should not be a
wildPath (wildpaths don’t work in this version).

The occurrences-specification can be either the s#ling the stringlast , or an explicit
value-range. The value-range is represented as an integer (the starting point), possibly followed by a
plus (+) and a second integer (the number of elements, default being one).

The variant-request has the same syntax as the defaultVariantRequest above. Note that it may
sometimes be useful to give an empty variant request, simply to disable the default for a specific set
of fields (we aren’t certain if this is prop&spec-1but it works in this implementation).

The following is an example of an element specification belonging to the GILS profile.

simpleelement (1,10)
simpleelement (1,12)
simpleelement (2,1)
simpleelement (1,14)
simpleelement (4,1)
simpleelement (4,52)

The Schema Mapping (.map) Files

Sometimes, the client might want to receive a database record in a schema that differs from the native
schema of the record. For instance, a client might only know how to process WAIS records, while the
database record is represented in a more specific schema, such as GILS. In this module, a mapping of
data to one of the MARC formats is also thought of as a schema mapping (mapping the elements of the
record into fields consistent with the given MARC specification, prior to actually converting the data to
the 1ISO2709). This use of the object identifier for USMARC as a schema identifier represents an

37

Chapter 7. The Record Model

overloading of the OID which might not be entirely proper. However, it represents the dual role of
schema and record syntax which is assumed by the MARC family in Z39.50.

NOTE: FIXME! The schema-mapping functions are so far limited to a straightforward mapping of
elements. This should be extended with mechanisms for conversions of the element contents, and
conditional mappings of elements based on the record contents.

These are the directives of the schema mapping file format:

targetNameaname

(m) A symbolic name for the target schema of the table. Useful mostly for diagnostic purposes.

targetRefOID-name

(m) An OID name for the target schema. This is used, for instance, by a server receiving a request
to present a record in a different schema from the native one. The name, again, is founsiéh the
module ofYAZ

mapelement-name target-path

(o,r) Adds an element mapping rule to the table.

The MARC (ISO2709) Representation (.mar) Files

This file provides rules for representing a record in the 1ISO2709 format. The rules pertain mostly to the
values of the constant-length header of the record.

NOTE: FIXME! This will be described better. We're in the process of re-evaluating and most likely
changing the way that MARC records are handled by the system.

Field Structure and Character Sets

In order to provide a flexible approach to national character set handling, Zebra allows the administrator
to configure the set up the system to handle any 8-bit character set — including sets that require
multi-octet diacritics or other multi-octet characters. The definition of a character set includes a
specification of the permissible values, their sort order (this affects the display in the SCAN function),
and relationships between upper- and lowercase characters. Finally, the definition includes the
specification of space characters for the set.

The operator can define different character sets for different fields, typical examples being standard text
fields, numerical fields, and special-purpose fields such as WWW-style linkages (URX).

The field types, and hence character sets, are associated with data elements by the .abs files (see above).
The file default.idx provides the association between field type codes (as used in the .abs files) and
the character map files (with the .chr suffix). The format of the .idx file is as follows

38

Chapter 7. The Record Model

indexfield type code

This directive introduces a new search index code. The argument is a one-character code to be used
in the .abs files to select this particular index type. An index, roughly, corresponds to a particular
structure attribute during search. Refethie Section calle@&earchin Chapter 6

sortfield code type

This directive introduces a sort index. The argument is a one-character code to be used in the .abs
fie to select this particular index type. The corresponding use attribute must be used in the sort
request to refer to this particular sort index. The corresponding character map (see below) is used in
the sort process.

completenesboolean

This directive enables or disables complete field indexing. The value @ibitbleanshould be 0

(disable) or 1. If completeness is enabled, the index entry will contain the complete contents of the
field (up to a limit), with words (non-space characters) separated by single space characters
(normalized to " " on display). When completeness is disabled, each word is indexed as a separate
entry. Complete subfield indexing is most useful for fields which are typically browsed (eg. titles,
authors, or subjects), or instances where a match on a complete subfield is essential (eg. exact title
searching). For fields where completeness is disabled, the search engine will interpret a search
containing space characters as a word proximity search.

charmagfilename

This is the filename of the character map to be used for this index for field type.

The contents of the character map files are structured as follows:

lowercasevalue-set

This directive introduces the basic value set of the field type. The format is an ordered list (without
spaces) of the characters which may occur in "words" of the given type. The order of the entries in
the list determines the sort order of the index. In addition to single characters, the following
combinations are legal:

- Backslashes may be used to introduce three-digit octal, or two-digit hex representations of single
characters (preceded kY. In addition, the combinations \\, \\r, \\n, \\t, \\s (space — remember
that real space-characters may not occur in the value definition), and \\ are recognized, with their
usual interpretation.

- Curly braces {} may be used to enclose ranges of single characters (possibly using the escape
convention described in the preceding point), eg. {a-z} to introduce the standard range of ASCII
characters. Note that the interpretation of such a range depends on the concrete representation in
your local, physical character set.

« paranthesises () may be used to enclose multi-byte characters - eg. diacritics or special national
combinations (eg. Spanish "lI"). When found in the input stream (or a search term), these
characters are viewed and sorted as a single character, with a sorting value depending on the
position of the group in the value statement.

39

Chapter 7. The Record Model

uppercasealue-set

This directive introduces the upper-case equivalencis to the value set (if any). The number and
order of the entries in the list should be the same as ifothercase directive.

spacevalue-set

This directive introduces the character which separate words in the input stream. Depending on the
completeness mode of the field in question, these characters either terminate an index entry, or
delimit individual "words" in the input stream. The order of the elements is not significant —
otherwise the representation is the same as fonphercase andlowercase directives.

mapvalue-set target

This directive introduces a mapping between each of the members of the value-set on the left to the
character on the right. The character on the right must occur in the value skethease

directive) of the character set, but it may be a paranthesis-enclosed multi-octet character. This
directive may be used to map diacritics to their base characters, or to map HTML-style
character-representations to their natural form, etc.

Exchange Formats

Converting records from the internal structure to en exchange format is largely an automatic process.
Currently, the following exchange formats are supported:

+ GRS-1. The internal representation is based on GRS-1/XML, so the conversion here is
straightforward. The system will create applied variant and supported variant lists as required, if a
record contains variant information.

- XML. The internal representation is based on GRS-1/XML so the mapping is trivial. Note that XML
schemas, preprocessing instructions and comments are not part of the internal representation and
therefore will never be part of a generated XML record. Future versions of the Zebra will support that.

« SUTRS. Again, the mapping is fairly straightforward. Indentation is used to show the hierarchical
structure of the record. All "GRS" type records support both the GRS-1 and SUTRS representations.
FIXME - What is SUTRS - should be expanded here

+ 1SO2709-based formats (USMARC, etc.). Only records with a two-level structure (corresponding to
fields and subfields) can be directly mapped to 1ISO2709. For records with a different structuring (eg.,
GILS), the representation in a structure like USMARC involves a schema-mappintpés8ection
calledThe Schema Mapping (.map) Fijeto an "implied" USMARC schema (implied, because there
is no formal schema which specifies the use of the USMARC fields outside of ISO2709). The
resultant, two-level record is then mapped directly from the internal representation to 1ISO2709. See
the GILS schema definition files for a detailed example of this approach.

- Explain. This representation is only available for records belonging to the Explain schema.

40

Chapter 7. The Record Model

Summary. This ASN-1 based structure is only available for records belonging to the Summary
schema - or schema which provide a mapping to this schema (see the description of the schema
mapping facility above).

SOIF. Support for this syntax is experimental, and is currently keyed to a private Index Data OID
(1.2.840.10003.5.1000.81.2). All abstract syntaxes can be mapped to the SOIF format, although nested
elements are represented by concatenation of the tag names at each level. FIXME - Is this used
anywhere ? What is SOIF anyway? -H

41

Appendix A. License

Zebra Server, Copyright © 1995-2002 Index Data ApS.

Zebra is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version.

Zebra is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Zebra; see the file
LICENSE.zebra. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

42

Appendix A. License

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

43

Appendix A. License

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

44

Appendix A. License
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further

45

Appendix A. License

restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is

implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free

46

Appendix A. License

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

47

Appendix A. License
(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w' and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

48

Appendix B. About Index Data and the Zebra
Server

Index Data is a consulting and software-development enterprise that specializes in library and
information management systems. Our interests and expertise span a broad range of related fields, and
one of our primary, long-term objectives is the development of a powerful information management
system with open network interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the
networking community, and to further the development of quality software for open network
communication.

We’'ll be happy to answer questions about the software, and about ourselves in general.

Index Data Aps
Kobmagergade 43

1150 Copenhagen K
Denmark

Phone +45 3341 0100

Fax +45 3341 0101

Email <info@indexdata.dk >

www.indexdata.dk (http://www.indexdata.dk/)

TheRandom House College DictionardQ75 edition offers this definition of the word "Zebra™:

[Zebra, n., any of several horselike, African mammals of the genus Equus, having a characteristic
pattern of black or dark-brown stripes on a whitish background.]

49

