YAZ++ User’'s Guide and Reference

Mike Taylor

Adam Dickmeiss

YAZ++ User’'s Guide and Reference
by Mike Taylor and Adam Dickmeiss

Copyright © 1999, 2000, 2001, 2002 by Index Data Aps and Mike Taylor

YAZ++ (http://www.indexdata.dk/yaz++/) is a set of libraries and header files that make it easier to use the popular
C-language YAZ toolkit (http://www.indexdata.dk/yaz/) from C++, together with some utilities written using these
libraries. It includes an implementation of the C++ binding for ZOGMDOM-C++) and a powerful,

general-purpose Z39.500xy.

This manual covers YAZ++ version 0.4.

Table of Contents

O 1S3 = =i o ST PR 1
BUIIAING 0N UNIX..tttitiriitirinieseee ettt s sttt st et st ettt 1
21011 o T aTo 0T T YAY/ o [0S 2

A © 10 11V @ e S 3
10T [T 1o o SRR 3
4@ 1@ 11V, HdoTo] o] o T=Tox o] o KNP URR R RTPPP 4

S (=TT (o= TSRS 4
ZOOM::query and SUDCIASSES.......ooiieeeeeeeiese ettt ettt see e ne e seesbeseeneeneenens 4
ZOOM:PIEfIXQUETY ettt sb e s s b e s sn e s snne e s anreenan 4
ZOOM:ICCLQUETY ..iutieieeeuee et esieesste st esteesseesase e bt e saeesaseebeesseesbesaabeeneesbessmneeneenbeesareeneereesans 5
D EST o B ES1S3 o WSS 5
L C] (=TT TS TSRS 5
pA @@ LY B (=Y U1 £ SRR 6
RETEIBINCES. ..ttt b e b b e e e et ae bt s ae b be b e e e enen 6
p4 @ @ 1LY (=Yoo 4o SRR S 7
MEMOTrY MaANAGEMENL.......ocuiiiiii ettt b e e b s se e seesre e e e b e sneenresneeneas 7
RETEIBINCES. ..t b e e b e e et a e bbbt et e e enea 8
ZOOM::exception and SUDCIASSES......cccciiiieicice ettt ene 8
ZOOM:ISYSIEMEXCEPHON .eeeiiiieiiiei et ee et e e e st e e e e sre e e e s s s nr e e e e s sanbne e e e e sannneeeeeannne 9
4 © 1@ 1Y R o 1o} T (eT=Y o o o T PSPPSRSO 9
4@ 1@ 11 Bdo [U1=T Y =hCet=T o] 1T] o ISP PPPRRPN 9
Revised Sample Programl........cccv ettt st sne e 10
RETEIEINCES. ...ttt s b b e et b e b e r e n s 11

I N 0TI VA o 0) SRS 12
Example: Using the Proxy t0 LOG APDUS.........ccccireiriene e e seeessese st eae e s e sse e seeseeneenens 12
Specifying the Backend Targel.......ccouoeeeerieiiseseresece st seeaee et se e sre s eeseneens 13
Keep-alive Facility for Stateless CHENTS.........ccociieieiee e 14
(@ U1 oY @2 ol 1 o o OO PSRRI 14
Other OPLIMIZALIONS. ..ot ettt st s b bbb 14
PIOXY USBIE. .. oottt st e e e e s r e n e r e e e e e nne 15

L2 A 0] (0)4V TP 15
OtherInformation ENCOTING........cccoueiiiiiriei ettt bbb 17

O VA O N LRSS 18

L= = ot 18
1YazS0CKEetODSEIVADIE.........co.oii e s 18
IYAZSOCKEIODSEIVEL......c.eeeiieieeitiee ettt ettt st se et e ae e s e e s e s e e ens 18
IYaz_PDU_ODBSEIVADIE.........coecee ettt e s e 19
N VA o D 10 @ o 1ST= A=Y oSS 19
YAZ_QUETY ..ttt ettt ettt b e he e bt he et e she e ae e ke ehe e b e eRe e e e eRe e e e bt nheenbenreennenas 20

IMPIEMENTALIONS. ...ttt b bbbt b e s b et e e e e st ebesbeseeseennenea 20
N VAR S Yo Ted 1] 1)Y= gV L= S 20
YAZ_PDU_ASSOC....tiiiiiiiitiiiesieesies st esteesieesiaeste s bessbesstesseesbeesstessesbeessaessseenbeesseessnesnsenns 20
VA A =3 o Lo TR PRSI 21
N VA | X1 To oS TR URPOPRPRTRN 23

YAZ_Z_ SEIVEL ...ttt ettt sttt sttt r e h e e e s bt bR b et s e r e r e re e n e 23
VA (0} TP P PP 23

YN I o <Y 1Y YT TR TR 25

Chapter 1. Installation

You need a C++ compiler to compile and use YAZ++. The software was implemented using GCC so we
know that works well with YAZ++. From time to time the software has been compiled on Windows

using Visual C++. Other compilers should work too. Let us know of portability problems, etc. with your
system.

YAZ++ is built on top of the YAZ (http://indexdata.dk/yaz/) toolkit. You need to install that first. For
some platforms there are binary packages for YAZ.

Building on Unix
On UNIX, the software is compiled as follows:

$./configure
$ make

$ su

make install

You can supply options for theonfigure script. The most useful ones are:

--prefix directory

Specifies installation prefix. By defauitsr/local is used.

--with-yazconfig directory

Specifies the location gfaz-config . Theyaz-config ~ program is generated in the source
directory of YAZ as well as the binaries directory when YAZ is installed (via make install).

If you don't supply this optiongonfigure will look for yaz-config in directories of the PATH
environment - which is nearly always what you want.

For the whole list otonfigure options, refer to the helpconfigure --help

This is what you have after successful compilation:

srclyaz-proxy
The YAZ 239.50 Proxyutility. This program gets installed in your binaries directory
(prefix /bin).

lib/libyaz++.la

The YAZ++ library, including theZzOOM-C++classes. This library gets installed in your libraries
directory prefix /lib).

Chapter 1. Installation

include/yaz++/*.h
Various C++ header files, which you'll need for YAZ development. All these are installed in your
header files aregpfefix /includelyaz++).

yaz++-config

A Bourne shell-script utility that returns the values of the CFLAGS and LIBS environment
variables needed in order to compile your applications with the YAZ++ library. This script gets
installed in your binaries directorpfefix /bin).

zoom/zclient

ZOOM C++ demonstration client. This client does not get installed in the system directories.

srclyaz-my-client

YAZ C++ demonstration client. This client does not get installed in the system directories.

srclyaz-my-server

YAZ C++ demonstration server. This server does not get installed in the system directories.

Building on Windows
You'll find Visual Studio project files in sub directoryin . Open workspacgazxx.dsw which includes

the following projects:

yazxx.dsp

Builds theyazxx.dll

yazclient.dsp

Builds the sample clientazmyclient.exe

yazserver.dsp

Builds the sample servgazmyserver.exe

yazserver.dsp

Builds the proxyyazproxy.exe

Chapter 2. ZOOM-C++

Introduction

ZOOM (http://zoom.z3950.0rg/) is the emerging standard API for information retrieval programming

using the Z39.50 protocol. ZOOM’s Abstract API (http://zoom.z3950.0rg/api/) specifies semantics for
classes representing key IR concepts such as connections, queries, result sets and records; and there are
various bindings (http://zoom.z3950.org/bind/) specifying how those concepts should be represented in
various programming languages.

The YAZ++ library includes an implementation of the C++ binding
(http://zoom.z3950.0rg/bind/cplusplus/) for ZOOM, enabling quick, easy development of client
applications.

For example, here is a tiny Z39.50 client that fetches and displays the MARC record for Farlow & Brett
Surman’sThe Complete Dinosaudrom the Library of Congress’s 239.50 server:

#include <iostream>
#include <yaz++/zoom.h>

using namespace ZOOM;

int main(int argc, char **argv)

{

connection conn("z3950.loc.gov", 7090);
conn.option("databaseName", "Voyager");
conn.option("preferredRecordSyntax”, "USMARC");
resultSet rs(conn, prefixQuery("@attr 1=7 0253333490"));
const record *rec = rs.getRecord(0);

cout << rec->render() << endl;

Note: For the sake of simplicity, this program does not check for errors: we show a more robust
version of the same program later.)

YAZ++'s implementation of the C++ binding is a thin layer over YAZ's implementation of the C
binding. For information on the supported options and other such details, see the ZOOM-C
documentation, which can be found on-line at http://www.indexdata.dk/yaz/doc/zoom.php

All of the classes defined by ZOOM-C++ are in theOMamespace. We will now consider the five
main classes in turn:

- connection
« query and its subclassgsefixQuery = andCCLQuery
- resultSet

« record

Chapter 2. ZOOM-C++

« exception and its subclasseystemException , biblException andqueryException

ZOOM::connection

A ZOOM::connection object represents an open connection to a Z39.50 server. Such a connection is
forged by constructing eonnection object.

The class has this declaration:

class connection {
public:
connection (const char *hostname, int portnum);
~connection ();
const char *option (const char *key) const;
const char *option (const char *key, const char *val);

When a neweconnection is created, the hostname and port number of a Z39.50 server must be

supplied, and the network connection is forged and wrapped in the new object. If the connection can'’t be
established - perhaps because the hosthame couldn’t be resolved, or there is no server listening on the
specified port - then aexception is thrown.

The only other methods oncannection object are for getting and setting options. Any hame-value
pair of strings may be set as options, and subsequently retrieved, but certain options have special
meanings which are understood by the ZOOM code and affect the behaviour of the object that carries
them. For example, the value of tHetabaseName option is used as the name of the database to query
when a search is executed againstdtvenection . For a full list of such special options, see the ZOOM
abstract APl and the ZOOM-C documentation (links below).

References

- Section 3.2 (Connection) of the ZOOM Abstract API (http://zoom.z3950.org/api/zoom-1.3.html#3.2)

« The Connections section of the ZOOM-C documentation
(http://www.indexdata.dk/yaz/doc/zoom.php#zoom.connections)

ZOOM::query and subclasses

ThezOOM::query class is a virtual base class, representing a query to be submitted to a server. This
class has no methods, but two (so far) concrete subclasses, each implementing a specific query notation.

ZOOM::prefixQuery

class prefixQuery : public query {

Chapter 2. ZOOM-C++

public:
prefixQuery (const char *pqgn);
~prefixQuery ();

h

This class enables a query to be created by compiling YAZ's cryptic but powerful Prefix Query Notation
(PQON) (http://www.indexdata.dk/yaz/doc/tools.php#PQF).

ZOOM::CCLQuery

class CCLQuery : public query {

public:
CCLQuery (const char *ccl, void *qualset);
~CCLQuery ();

h

This class enables a query to be created using the simpler but less expressive Common Command
Language (CCL) (http://www.indexdata.dk/yaz/doc/tools.php#CCL). The qualifiers recognised by the
CCL parser are specified in an external configuration file in the format described by the YAZ
documentation.

If query construction fails for either type qfiery object - typically because the query string itself is not
valid PON or CCL - then aexception is thrown.

Discussion

It will be readily recognised that these objects have no methods other than their constructors: their only
role in life is to be used in searching, by being passed toehétSet class’s constructor.

Given a suitable set of CCL qualifiers, the following pairs of queries are equivalent:

prefixQuery("dinosaur");
CCLQuery("dinosaur");

prefixQuery("@and complete dinosaur");
CCLQuery("complete and dinosaur");

prefixQuery("@and complete @or dinosaur pterosaur");
CCLQuery("complete and (dinosaur or pterosaur)");

prefixQuery("@attr 1=7 0253333490");
CCLQuery("isbn=0253333490");

Chapter 2. ZOOM-C++

References

« Section 3.3 (Query) of the ZOOM Abstract API (http://zoom.z3950.org/api/zoom-1.3.html#3.3)

« The Queries section of the ZOOM-C documentation
(http://www.indexdata.dk/yaz/doc/zoom.query.php)

ZOOM::resultSet

A ZOOM:resultSet object represents a set of records identified by a query that has been executed
against a particular connection. The sole purpose of bmthection andquery objects is that they

can be used to create neggultSet s - that is, to perform a search on the server on the remote end of
the connection.

The class has this declaration:

class resultSet {
public:
resultSet (connection &c, const query &Qq);
~resultSet ();
const char *option (const char *key) const;
const char *option (const char *key, const char *val);
size_t size () const;
const record *getRecord (size_t i) const;

NewresultSet s are created by the constructor, which is passeshaection , indicating the server
on which the search is to be performed, angiery , indicating what search to perform. If the search
fails - for example, because the query uses attributes that the server doesn’'t implement - then an
exception is thrown.

Like connection s,resultSet objects can carry name-value options. The special options which affect
ZOOM-C++'s behaviour are the same as those for ZOOM-C and are described in its documentation (link
below). In particular, thereferredRecordSyntax option may be set to a string such as “USMARC”,
“SUTRS” etc. to indicate what the format in which records should be retrieved; and the

elementSetName option indicates whether brief records (“B”), full records (“F”) or some other
composition should be used.

Thesize() method returns the number of records in the result set. Zero is a legitimate value: a search
that finds no records is not the same as a search that fails.

Finally, thegetRecord method returns thieth record from the result set, wherds zero-based: that is,
legitmate values range from zero up to one less than the result-set size. If the method fails, for example
because the requested record is out of rangleratv S anexception

References

« Section 3.4 (Result Set) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.4)

Chapter 2. ZOOM-C++

« The Result Sets section of the ZOOM-C documentation
(http://www.indexdata.dk/yaz/doc/zoom.resultsets.php)

ZOOM::record

A ZOOM:record object represents a chunk of data fromesultSet returned from a server.

The class has this declaration:

class record {

public:
~record ();
enum syntax {

UNKNOWN, GRS1, SUTRS, USMARC, UKMARC, XML

h
record *clone () const;
syntax recsyn () const;
const char *render () const;
const char *rawdata () const;

Records returned from Z39.50 servers are encoded using a record syntax: the various national MARC
formats are commonly used for bibliographic data, GRS-1 or XML for complex structured data, SUTRS
for simple human-readable text, etc. Tieeord::syntax enumeration specifies constants

representing common record syntaxes, anddbgyn() method returns the value corresponding to the
record-syntax of the record on which it is invoked.

Note: Because this interface uses an enumeration, it is difficult to extend to other record syntaxes -
for example, DANMARC, the MARC variant widely used in Denmark. We might either grow the
enumeration substantially, or change the interface to return either an integer or a string.

The simplest thing to do with a retrieved record is simplyeiader() it. This returns a

human-readable, but not necessarily very pretty, representation of the contents of the record. This is
useful primarily for testing and debugging, since the application has no control over how the record
appears. (The application musitdelete the returned string - it is “owned” by the record object.)

More sophisticated applications will want to deal with the raw data themselvesvibeta() method
returns it. Its format will vary depending on the record syntax: SUTRS, MARC and XML records are
returned “as is”, and GRS-1 records as a pointer to their top-level node, which GeaericRecord
structure as defined in thgaz/z-grs.h> header file. (The application musbt delete the returned
data - it is “owned” by the record object.)

Perceptive readers will notice that there are no methods for access to individual fields within a record.
That's because the different record syntaxes are so different that there is no even a uniform notion of
what a field is across them all, let alone a sensible way to implement such a function. Fetch the raw data
instead, and pick it apart “by hand”.

Chapter 2. ZOOM-C++

Memory Management

Therecord obejcts returned fromesultSet::getRecord() are “owned” by the result set object:
that means that the application is not responsiblelétste ing them - eachecord is automatically
deallocated when thesultSet that owns it isdelete d.

Usually that’s what you want: it means that you can easily fetch a record, use it and forget all about it,
like this:

resultSet rs(conn, query);
cout << rs.getRecord(0)->render();

But sometimes you wantracord to live on past the lifetime of theesultSet ~ from which it was
fetched. In this case, thone(f) method can be used to make an autonomous copy. The application
mustdelete it when it doesn’t need it any longer:

record *rec;

{
resultSet rs(conn, query);
rec = rs.getRecord(0)->clone();
/I ‘rs’ goes out of scope here, and is deleted
}
cout << rec->render();
delete rec;
References

« Section 3.5 (Record) of the ZOOM Abstract API (http://zoom.z3950.org/api/zoom-1.3.html#3.5)

« The Records section of the ZOOM-C documentation
(http://www.indexdata.dk/yaz/doc/zoom.records.php)

ZOOM::exception and subclasses

ThezOOM::exception class is a virtual base class, representing a diagnostic generated by the
ZOOM-C++ library or returned from a server. Its subclasses represent particular kinds of error.

When any of the ZOOM methods fail, they respondtiogw ing an object of typexception or one of
its subclasses. This most usually happens wittctiveection constructor, the various query
constructors, theesultSet constructor (which is actually the searching method) and
resultSet::getRecord()

The base class has this declaration:

class exception {
public:
exception (int code);
int errcode () const;

Chapter 2. ZOOM-C++

const char *errmsg () const;

k

It has three concrete subclasses:

ZOOM::systemException

class systemException: public exception {
public:

systemException ();

int errcode () const;

const char *errmsg () const;

k

Represents a “system error”, typically indicating that a system call failed - often in the low-level
networking code that underlies Z39.%0rcode() returns the value that the system variadi®o had
at the time the exception was constructed; amohsg() returns a human-readable error-message
corresponidng to that error code.

ZOOM::bib1Exception

class biblException: public exception {
public:
bib1Exception (int errcode, const char *addinfo);
int errcode () const;
const char *errmsg () const;
const char *addinfo () const;

Represents an error condition communicated by a Z39.50 serugrde() returns the BIB-1
diagnostic code of the error, aedmsg() a human-readable error message corresponding to that code.
addinfo() returns any additional information associated with the error.

For example, if a ZOOM application tries to search in the “Voyager” database of a server that does not
have a database of that nameijt@LException will be thrown in whicherrcode() returns 109,

errmsg() returns the corresponding error message “Database unavailabledidintb() returns the
name of the requested, but unavailable, database.

ZOOM::queryException

class queryException: public exception {
public:
static const int PREFIX = 1;
static const int CCL = 2;
queryException (int gtype, const char *source);
int errcode () const;

Chapter 2. ZOOM-C++

const char *errmsg () const;
const char *addinfo () const;

k

This class represents an error in parsing a query into a form that a Z39.50 can understand. It must be
created with thettype parameter equal to one of the query-type constants, which can be retrieved via
theerrcode() method;errmsg() returns an error-message specifying which kind of query was
malformed; anchddinfo() returns a copy of the query itself (that is, the valueafrce with which

the exception object was created.)

Revised Sample Program

Now we can revise the sample program fromititeoductionto catch exceptions and report any errors:
/* g++ -0 zoom-c++-hw zoom-c++-hw.cpp -lyaz++ -lyaz */

#include <iostream>
#include <yaz++/zoom.h>

using namespace ZOOM;

int main(int argc, char **argv)

{
try {
connection conn("z3950.loc.gov"”, 7090);
conn.option("databaseName", "Voyager");
conn.option("preferredRecordSyntax”, "USMARC");
resultSet rs(conn, prefixQuery("@attr 1=7 0253333490"));
const record *rec = rs.getRecord(0);
cout << rec->render() << endl;
} catch (systemException &e) {
cerr << "System error " <<
e.errcode() << " (" << e.errmsg() << ")" << end|;
} catch (biblException &e) {
cerr << "BIB-1 error " <<
e.errcode() << " (" << e.errmsg() << "): " << e.addinfo() << endl;
} catch (queryException &e) {
cerr << "Query error " <<
e.errcode() << " (" << e.errmsg() << "): " << e.addinfo() << endl;
} catch (exception &e) {
cerr << "Error " <<
e.errcode() << " (" << e.errmsg() << ")" << endl;
}
}

The heart of this program is the same as in the original version, but it's now wrapped intdock
followed by severatatch blocks which try to give helpful diagnostics if something goes wrong.

The first such block diagnoses system-level errors such as memory exhaustion or a network connection
being broken by a server’s untimely death; the second catches errors at the Z39.50 level, such as a

10

Chapter 2. ZOOM-C++

server’'s report that it can’t provide records in USMARC syntax; the third is there in case there’s
something wrong with the syntax of the query (although in this case it's correct); and finally, the last
catch block is a belt-and-braces measure to be sure that nothing escapes us.

References

« Section 3.7 (Exception) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.7)

- Bib-1 Diagnostics (http://lcweb.loc.gov/z3950/agency/defns/bibldiag.html) on the Z39.50
Maintenance Agency (http://lcweb.loc.gov/z3950/agency/) site.

Because C does not support exceptions, ZOOM-C has no API element that corresponds directly with
ZOOM-C++'sexception class and its subclasses. The closest thing iZ@@M_connection_error

function described in The Connections section
(http://Iwww.indexdata.dk/yaz/doc/zoom.php#zoom.connections) of the documentation.

11

Chapter 3. The YAZ Proxy

The YAZ proxy is a transparent Z39.50-t0-239.50 gateway. That is, it is a Z39.50 server which has as its
back-end a 239.50 client that forwards requests on to another server (knowrbaskked targe}

The YAZ Proxy is useful for debugging 239.50 software, logging APDUS, redirecting Z39.50 packages
through firewalls, etc. Furthermore, it offers facilities that often boost performance for connectionless
Z739.50 clients such as web gateways.

Unlike most other server software, the proxy runs single-threaded, single-process. Every I/O operation is
non-blocking so it is very lightweight and extremely fast. It does not store any state information on the
hard drive, except any log files you ask for.

Example: Using the Proxy to Log APDUs

Suppose you use a commercial Z39.50 client for which you do not have source code, and it's not
behaving how you think it should when running against some specific server that you have no control
over. One way to diagnose the problem is to find out what packets (APDUSs) are being sent and received,
but not all client applications have facilities to do APDU logging.

No problem. Run the proxy on a friendly machine, get it to log APDUs, and point the errant client at the
proxy instead of directly at the server that’s causing it problems.

Suppose the server is running faw.bar.com , port 18398. Run the proxy on the machine of your
choice, sayour.company.com like this:

yaz-proxy -a - -t tcp:foo.bar.com:18398 tcp:@:9000

(The-a - option requests APDU logging on standard outpiutcp:foo.bar.com: 18398 specifies
where the backend target is, atied:@:9000 tells the proxy to listen on port 9000 and accept
connections from any machine.)

Now change your client application’s configuration so that instead of connectfag.bar.com port
18398, it connects tgour.company.com port 9000, and start it up. It will work exactly as usual, but all
the packets will be sent via the proxy, which will generate a log like this:

decode choice

initRequest {
referenceld OCTETSTRING(len=4) 69 6E 69 74
protocolVersion BITSTRING(len=1)
options BITSTRING(len=2)
preferredMessageSize 1048576
maximumRecordSize 1048576
implementationld 'Mike Taylor (id=169)’
implementationName ’Net::Z3950.pm (Perl)’
implementationVersion '0.31’

}

encode choice

initResponse {
referenceld OCTETSTRING(len=4) 69 6E 69 74

12

}

protocolVersion BITSTRING(len=1)

options BITSTRING(len=2)

preferredMessageSize 1048576

maximumRecordSize 1048576

result TRUE

implementationid '81’

implementationName 'GFS/YAZ |/ Zebra Information Server
implementationVersion 'YAZ 1.9.1 / Zebra 1.3.3

decode choice
searchRequest {

referenceld OCTETSTRING(len=1) 30
smallSetUpperBound 0
largeSetLowerBound 1
mediumSetPresentNumber 0
replacelndicator TRUE

resultSetName ’default’
databaseNames {

'gils’

}

{
smallSetElementSetNames choice
generic 'F’

}

{
mediumSetElementSetNames choice
generic 'B’

}

preferredRecordSyntax OID: 1 2 840 10003 5 10
{

query choice

type_1 {
attributeSetld OID: 1 2 840 10003 3 1
RPNStructure choice

Chapter 3. The YAZ Proxy

{
simple choice
attributesPlusTerm {
attributes {
}
term choice
general OCTETSTRING(len=7) 6D 69 6E 65 72 61 6C
}
}

13

Chapter 3. The YAZ Proxy

Specifying the Backend Target

When the proxy accepts a Z39.50 client session, it determines the backend target by the following rules:

1. If the InitializeRequest PDU from the client includes amtherinfo element with OID
1.2.840.10003.10.1000.81.1 , then the contents of that element specify the target to be used, in
the usual YAZ address format (typicaliyp: hostname : port) as described in the Addresses
section of the YAZ manual (http://www.indexdata.dk/yaz/doc/comstack.addresses.php).

2. Otherwise, the Proxy uses the default target, if one was specified on the command-line with the
option.

3. Otherwise, the proxy closes the connection with the client.

Keep-alive Facility for Stateless Clients

Stateless clients such as web gateways may generate a cookie for a Z39.50 session which is sent to the
proxy as part of PDUs. In this case, the proxy will keep alive its Z39.50 session to the backend target
even when the connection from the client to the proxy is closed. When the client contacts the proxy
again, and re-issues the same cookie, the proxy reuses the Z239.50 connection with the backend target.

There is no guarantee that the Z39.50 connection to the backend target is kept forever: the proxy will
shut it down after certain idle time. So in effect, the connection from the client’s point of view should be
considered stateless, and the keep-alive facility should be treated only as a performance booster.

Cookies may be passed in atherinfo element with OID1.2.840.10003.10.1000.81.2

Query Caching

Simple stateless clients often send identical Z39.50 searches in a relatively short period of time (e.g. in
order to produce a results-list page, the next page, a single full-record, etc). And for many targets, it's
much more expensive to produce a new result set than to reuse an existing one.

The proxy tries to solve that by remembering the last query for each backend target, so that if an identical
query is received next, it is turned into Present Requests rather than new Search Requests.

Note: In a future we release will will probably allows for an arbitrary-sized cache for targets
supporting named result sets.

You can enable/disable query caching using option -o.

14

Chapter 3. The YAZ Proxy

Other Optimizations

We've had some plans to support caching of result set records, but this has not yet been implemented.

Proxy Usage

yaz-proxy

Name
yaz-proxy — The YAZ toolkit’s transparent Z39.50 proxy

Synopsis

yaz-proxy [-afilename][-c num][-v level]][-ttarget][-u auth][-0 level][-i
seconds]{host :port }

DESCRIPTION

The proxy runs stand-alone (not franetd). Thehost :port argument specifies host address to listen
to, and the port to listen on. Use the h@ib listen for connections coming from any address.

OPTIONS

-afilename

Specifies the name of a file to which to write a log of the APDUs (protocol packets) that pass
through the proxy. The special filenamenay be used to indicate standard output.

-cnum
Specifies the maximum number of connections to be cached [default 50].

-v level
Sets the logging levelevel is a comma-separated list of members of the set
{fatal ,debug ,warn log ,malloc ,all ,none}.

-t target

Specifies the default backend target to use when a client connects that does not explicitly specify a
target in itsinitRequest

15

-u auth

-olevel

-i seconds

Chapter 3. The YAZ Proxy

Specifies authentication info to be sent to the backend target. This is useful if you happen to have
an internal target that requires authentication, or if the client software does not allow you to set it.

Sets level for optimization. Use zero to disable; non-zero to enable. Handling for this is not fully
implemented; we will probably use a bit mask to enable/disable specific features. By default
optimization is enabled (value 1).

Specifies in seconds the idle time for communication for proxy. If a connection is inactive for this
long it willl be closed. Default: 600 seconds (10 minutes).

EXAMPLES

The following command starts the proxy, listening on port 9000, with its default backend target set to the
Library of Congress bibliographic server:

$ yaz-proxy -t z3950.loc.gov:7090 @:9000

The LOC target is sometimes very slow. You can connect to it using yaz-client as follows:

$ yaz-client localhost:9000/voyager
Connecting...Ok.

Sent initrequest.

Connection accepted by target.

ID ;34
Name . Voyager LMS - Z39.50 Server
Version: 1.13

Options: search present
Elapsed: 7.131197

Z> f computer

Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 10000
records returned: O
Elapsed: 6.695174

Z> f computer

Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 10000
records returned: O
Elapsed: 0.001417

In this test, the second search was more than 4000 times faster than the first, because the proxy cached
the result of the first search and noticed that the second was the same.

16

Chapter 3. The YAZ Proxy

The YAZ command-line clienaz-client , allows you to set the proxy target as part of the Initialize
Request using optiom . For example, to connect to Index Data’s target you could use:

yaz-client -p indexdata.dk localhost:9000/gils

Otherinformation Encoding

The proxy uses the Otherinformation definition to carry information about the target address and cookie.

OtherInformation = [201] IMPLICIT SEQUENCE OF SEQUENCE({
category [1] IMPLICIT InfoCategory OPTIONAL,
information CHOICE({

characterinfo [2] IMPLICIT InternationalString,
binaryInfo [3] IMPLICIT OCTET STRING,
externallyDefinedInfo [4] IMPLICIT EXTERNAL,

oid [5] IMPLICIT OBJECT IDENTIFIER}}

InfoCategory ::= SEQUENCE{
categoryTypeld [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,
categoryValue [2] IMPLICIT INTEGER}

ThecategoryTypeld s either OID 1.2.840.10003.10.1000.81.1, 1.2.840.10003.10.1000.81.2 for
proxy target and proxy cookie respectively. The integer elerwatory is set to 0. The value proxy
and cookie is stored in elemesttaracterinfo of theinformation ~ choice.

17

Chapter 4. YAZ C++ API

The YAZ C++ APl is an client - and server API that exposes all YAZ features. The API doesn't hide
YAZ C data structures, but provides a set of useful high-level objects for creating clients - and servers.

The following sections include a short description of the interfaces and implementations (concrete

classes).
In order to understand the structure, you should look at the example ydienty-client.cpp and
the example servetaz-my-server.cpp . If that is too easy, you can always turn to the implementation

of the proxy itself and send us a patch if you implement a new useful feature.

Note: The documentation here is very limited. We plan to enhance it - provided there is interest for it.

Interfaces

IlYazSocketObservable

This interface is capable of observing sockets. When a socket even occurs it invokes an object
implementing thdYazSocketObserventerface.

#include <yaz++/socket-observer.h>

class my_socketobservable : public IYazSocketObservable {
/Il Add an observer interested in socket fd
virtual void addObserver(int fd, IYazSocketObserver *observer) = O;
/I Delete an observer
virtual void deleteObserver(lYazSocketObserver *observer) = 0;
/I Delete all observers
virtual void deleteObservers() = 0;
/I Specify the events that the observer is interested in.
virtual void maskObserver(lYazSocketObserver *observer,
int mask) = 0;
/I Specify timeout
virtual void timeoutObserver(lYazSocketObserver *observer,
unsigned timeout)=0;

IYazSocketObserver
This interface is interested in socket events supportingaeSocketObservablaterface.

#include <yaz++/socket-observer.h>

class my_socketobserver : public IYazSocketObserver {

18

Chapter 4. YAZ C++ API

public:
/I Notify the observer that something happened to socket
virtual void socketNotify(int event) = 0;

IlYaz_PDU_Observable

This interface is is responsible for sending - and receiving PDUs over the network (YAZ COMSTACK).
When events occur, an instance implementiyay_ PDU_Observeis notified.

#include <yaz++/pdu-observer.h>

class my_pduobservable : public IYaz_PDU_Observable {
public:

/I Send encoded PDU buffer of specified length

virtual int send_PDU(const char *buf, int len) = O;

/I Connect with server specified by addr.

virtual void connect(lYaz_PDU_Observer *observer,
const char *addr) = 0;

/I Listen on address addr.

virtual void listen(lYaz_PDU_Observer *observer, const char *addr)=0;

/I Close connection

virtual void close() = O;

/I Make clone of this object using this interface

virtual IYaz_PDU_Observable *clone() = 0;

/I Destroy completely

virtual void destroy() = O;

/I Set Idle Time

virtual void idleTime (int timeout) = O;

IYaz_PDU_Observer
This interface is interested in PDUs and using an object implemehtary PDU_Observable

#include <yaz++/pdu-observer.h>

class my_pduobserver : public IYaz_PDU_Observer {
public:
/I A PDU has been received
virtual void recv_PDU(const char *buf, int len) = 0;
/I Called when lyaz_PDU_Observable::connect was successful.
virtual void connectNotify() = O;
/I Called whenever the connection was closed
virtual void failNotify() = O;
/I Called whenever there is a timeout
virtual void timeoutNotify() = O;

19

Chapter 4. YAZ C++ API

/I Make clone of observer using IYaz_PDU_Observable interface
virtual IYaz_PDU_Observer *sessionNotify(
IYaz_PDU_Observable *the_PDU_Observable, int fd) = 0;

Yaz_Query
Abstract query.

#include <yaz++/query.h>
class my_query : public Yaz_Query {
public:
/I Print query in buffer described by str and len
virtual void print (char *str, int len) = 0;

Implementations

Yaz_SocketManager

This class implements th&razSocketObservablaterface and is a portable socket wrapper around the
select call. This implementation is useful for daemons, command line clients, etc.

#include <yaz++/socket-manager.h>

class Yaz_SocketManager : public IYazSocketObservable {
public:
/I Add an observer
virtual void addObserver(int fd, I'YazSocketObserver *observer);
/I Delete an observer
virtual void deleteObserver(lYazSocketObserver *observer);
/I Delete all observers
virtual void deleteObservers();
/I Set event mask for observer
virtual void maskObserver(lYazSocketObserver *observer, int mask);
/I Set timeout
virtual void timeoutObserver(lYazSocketObserver *observer,
unsigned timeout);
/Il Process one event. return > 0 if event could be processed;
int processEvent();
Yaz_SocketManager();
virtual ~Yaz_SocketManager();

20

Chapter 4. YAZ C++ API

Yaz_PDU_Assoc

This class implements the interfad®sz_PDU_ObservablandlYazSocketObservei his object
implements a non-blocking client/server channel that transmits BER encoded PDUs (or those offered by
YAZ COMSTACK).

#include <yaz++/pdu-assoc.h>

class Yaz_PDU_Assoc : public IYaz_PDU_Observable,

IYazSocketObserver {

public:

Yaz_Z Assoc

COMSTACK comstack(const char *type_and_host, void **vp);

/I Create object using specified socketObservable

Yaz_PDU_Assoc(lYazSocketObservable *socketObservable);

/I Create Object using existing comstack

Yaz_PDU_Assoc(lYazSocketObservable *socketObservable,
COMSTACK cs);

/I Close socket and destroy object.

virtual ~Yaz_PDU_Assoc();

/I Clone the object

IYaz_PDU_Observable *clone();

/I Send PDU

int send_PDU(const char *buf, int len);

/I connect to server (client role)

void connect(lYaz_PDU_Observer *observer, const char *addr);

/I listen for clients (server role)

void listen(lYaz_PDU_Observer *observer, const char *addr);

/I Socket notification

void socketNotify(int event);

/I Close socket

void close();

/I Close and destroy

void destroy();

/I Set Idle Time

void idleTime (int timeout);

/I Child start...

virtual void childNotify(COMSTACK cs);

This class implements the interfaidaz_PDU_ObsereiThis object implements a Z39.50 client/server
channel AKA Z-Association.

#include <yaz++/z-assoc.h>

class Yaz_Z_Assoc : public I'Yaz_PDU_Observer {
public:

/I Create object using the PDU Observer specified

21

Chapter 4. YAZ C++ API

Yaz_Z_ Assoc(lYaz_PDU_Observable *the_PDU_Observable);
/I Destroy association and close PDU Observer
virtual ~Yaz_Z_Assoc();

/I Receive PDU

void recv_PDU(const char *buf, int len);

/I Connect notification

virtual void connectNotify() = 0;

/I Failure notification

virtual void failNotify() = O;

/I Timeout notification

virtual void timeoutNotify() = O;

/I Timeout specify

void timeout(int timeout);

/Il Begin Z39.50 client role

void client(const char *addr);

/Il Begin Z39.50 server role

void server(const char *addr);

/I Close connection

void close();

/Il Decode Z39.50 PDU.

Z_APDU *decode_zZ PDU(const char *buf, int len);
/I Encode Z39.50 PDU.

int encode_Z_PDU(Z_APDU *apdu, char **buf, int *len);
/I Send Z39.50 PDU

int send_Z PDU(Z_APDU *apdu);

/I Receive Z39.50 PDU

virtual void recv_Z PDU(Z_APDU *apdu) = 0;

/I Create Z39.50 PDU with reasonable defaults
Z_APDU *create_Z_PDU(int type);

/I Request Alloc

ODR odr_encode ();

ODR odr_decode ();

ODR odr_print ();

void set_ APDU_log(const char *fname);

const char *get_ APDU_log();

/I OtherInformation
void get_otherinfoAPDU(Z_APDU *apdu, Z_Otherinformation ***oip);
Z_OtherIinformationUnit *update_otherinformation (
Z_OtherInformation **otherinformationP, int createFlag,
int *oid, int categoryValue, int deleteFlag);
void set_otherinformationString (
Z_OtherInformation **otherInformationP,
int *oid, int categoryValue,
const char *str);
void set_otherinformationString (
Z_OtherInformation **otherinformation,
int oidval, int categoryValue,
const char *str);
void set_otherinformationString (
Z_APDU *apdu,
int oidval, int categoryValue,

22

Chapter 4. YAZ C++ API
const char *str);
Z_Referenceld *getReflD(char* str);
Z_Referenceld **get_referenceldP(Z_APDU *apdu);
void transfer_referenceld(Z_APDU *from, Z_APDU *to0);

const char *get_hostname();

Yaz_IR_Assoc
This object is just a specialization ¥6z_Z_Assoand provides more facilities for the Z39.50 client role.

#include <yaz++/ir-assoc.h>
class Yaz_IR_Assoc : public Yaz_Z_Assoc {

b

The example clientyaz-my-client.cpp , uses this class.

Yaz_Z Server

This object is just a specialization ¥&z_Z_Assoand provides more facilities for the 2Z39.50 server

role.
#include <yaz++/z-server.h>
class Yaz_Z_Server : public Yaz_Z_Server {
b
The example serveyaz-my-server.cpp , uses this class.
Yaz_Proxy

This object is a specialization dz_Z Asso@nd implements the YAZ proxy.

#include <yaz++/proxy.h>
class Yaz_Proxy : public Yaz_Z_Server {

b

23

Chapter 4. YAZ C++ API

The proxy servetyaz-proxy-main.cpp , uses this class.

24

Appendix A. License

Copyright © 1999-2002 Index Data Aps and Mike Taylor.

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in
part, for any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation.
Notices of copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of Index Data or the individual authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL INDEX DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

25

